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ABSTRACT

Free-fall periodic orbits which join Earth and Mars and
which go back and forth between Earth and Mars forever are
found through use of a patched conic analysis. Each of the
periodic orbits found includes round trips from Earth to
Mars and back to Earth along with series of direct returns
at Earth. The periodic orbits are first established by com-
puter solution in the case where the two planets are in cir-
cular coplanar orbits; then computer solution is attempted
in the eccentric inclined case and has been found for several
of the periodic orbit schemes attempted. In order to find
thes: periodic orbits, a logical approach is developed to com-
bine two round trips to Mars and two separate series of direct
returns at Earth in an arrangement which is "symmetric" in
time. The selection of the series of direct returns is facili-
tated by the formation of a list of all combinations of direct
returns. The most efficient periodic orbit found requires
four Earth-Mars synodic periods or 8.33 years on the average
to make two round trips to Mars. Other periodic orbits found
require five or more synodic periods to make the two visits
to Mars.




iii

Thesis Supervisors:

Title:

Title:

Title:

Title:

Walter M. Hollister

Associate Professor of Aeronautics and
Astyronautics

Wallace B. VanderVelde
Professor of Aeronsutics and Astronautics

James E. Potter

Associate Professor of Aerconautics and
Astronautics

Walter McKay
Professor of Aeronautics and Astronautics



iv

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to the
following persons: Professor Hollister who as the author's.
doctoral committee chairman gave much technical and literary
assistance toward the completion of the thesis, Professor
VanderVelde for his careful review of the thesis, Professors
Potter and McKay who élso served on the doctoral committee,
and the author'é wife Barbara who helped to type, edit and
proofread the manuscript.

Acknowledgement is also made to the M.I.T. Computation
Center for its work done as Problem M4131.

This report was published under National Aeronautics
and Space Administration Grant Number NGR 22-009-010. The
publication of this report does not constitute approval by’
the National Aeronautics and Space Administration of the
findings or the conclusions contained therein. It is pub-

lished only for the exchange and stimulation of ideas.




TABLE OF CONTENTS

Chapter

1.0 Introduction
1.1 What is Meant by the Term Periodic Orbit
1.2 Possible Applications of Periodic Orbits
1.3 Approximations Used in This Thesis

2.0

3.0

1.3.1 The Patched Conic Approximation
1.3.2 The Periodicity of the Solar System

Numerical Techniques

2.1
2.2

2.3
2ol
2.5

The Basic Numerical Problem

Convergence Criteria for the "Ends” of a
Periodic Orbit

Models of the Solar System
Complexity of the Function Space

Other Numericazl Problems

Direct Return Trajectories

5.1
3.2

5.5

Introduction to Direct Return Trajectories
Full Revolution Return Trajectories

3.2.1 General Characteristics of Full
Revolution Return Trajectories

3.2.2 Turn Angle Selection for a Series of
Full Revolution Returns

3.2.2.1 Turn Angle Selection for One
Full Revolution Return

3.,2.2.2 Turn Angle Selection for Two
or More Full Revolution Returns

Half Revolution Return Trajectories

Dage

15
15

19

24
28
31
31
34

34

37

41

42

43




vi

%.%2.1 Genersl Chargcteristics of Half 43
Revolution Return Trajectories

3.3.2 Turn Angle Selection for a Half

Revolution Return and Several Full 45
Revolution Returns
3.4 Symmetric Return Trajectories 49
3.4.1 The Linear Case 50
2.4,2 Symmetric Returns at a Planet in 52
Circular Orbit Around the Sun
3.4.3 Selection of the Semimajor Axis for 59
a Symmetric Return Trajectory
3.5 Series of Direct Return Trajectories 60

3.6 Direct Return Trajectories Which Traverse the g3
Sun a Different Number of Times than the
Planet

Possible Approaches to Obtain Periodic Orbits 65
Connecting Earth and Mars

4.1 Approach Involving Direct Return Orbits at 68
Both Earth and Mars

4.2 An Attempt to Obtain Directly an Earth- 71
Venus-Mars Periodic Orbit

4.% Reduction of the Earth-Venus-Mars Periodic 74
Orbit Problem to a Two-Dimensional Problem .

4.4 The Possibility of Obtaining a Mars-Venus
Periodic Orbit Which Visits Earth Occasionally

4.5 Use of Earth-Mars-Earth Round Trip Trajectories
Plus Suitable Waiting Times in the Vicinity of
FEarth 86

4,6 Periodic Orbits Which Involve Earth, Mars, and
Venus 91

Detailed Demonstration of the More Promising Periodic
Orbits ' 102

5.1 Earth-Mars Periodic Orbits in the Circular 102
Coplanar Case




6.0

vii

5.2 Karth-Mars Periodic Orbits in the Eccentric

Inclined Case

5.3 An Interplanetary Transportation System Based

on Periodic Orbits to Mars
Summary and Conclusions
6.1 Summary
6.2 Conclusions

6.3 Recommendations for Further Study

gppendices

A Computer Frogram

B Mean Anomoly Calculation for a Half Revolution
Return

C The Number of Combinations Available

D Combinations of Direct Returns at'Earth

B Circular Coplanar Earth~Mars Periodic Orbits

F Eccentric Inclined Earth-Mars Periodic Orbits

Figures

1-1 Spacing of the planetary alignments.

3.1 Locus of points of the tip of the velocity
vector for a full revolution return and a half
revolution return. :

3-2 Turn angle selection.

3-3 Speed and departure angle at Earth for S1SR
and L1SR.

3-4 Speed and departure angle at Barth for S2SR
and L2SR.

3-5 Speed and departure angle at Earth for S3SR
and L3SR.

3-6 Speed and departure angle at Earth for S4SR

and L4SR,

112

116
119
119
125
126

129
157

161
165
179

189

12

36
40
54

55

56

57




4-3

4-6

4-7

4-8

viii

opeed and departure angle at Earth for OS5GSR
and L5SR.

Times associated with series of direct returns.

Listance from the Sun as a function of time for
a periodic orbit scheme to Mars which involves
direct returns at both Earth and Venus.

Distance from the Sun as a function of time for
a periodic orbit scheme which encounters Earth,
Mars, and Venus but has direct returns only at

Barth.

Regions of possible trajectories and investi-
gation for periodic orbit attempts involving
symmetric Earth-Venus-Mars-Venus-Earth flyby
trajectories.

Locus of points such that the hyperbolic excess
speed difference at Venus is equal to zero.

The locus of Figure 4-4 plus two different locii
such that the hyperbolic excess speed difference
at Barth is equal to zero. (-=----- with two full
revolution returns at Venus. (=c=-= ) with three
full revolution returns at Venus.

Symmetric round trips past Mars, overlaid on
constant speed curves. .

Nonsymmetric round trips past Mars, overlaid on
constant speed curves.

Symmetric high-~energy trips past Mars, modified
by close approaches at various distances,

Symmetric low-energy trips past Mars, modified
by close approaches at various distances,

Nonsymmetric low-energy trips past Mars, modified
by close approaches at various distances,

Distance from the Sun as a function of time for
periodic orbit M4-1,

Distance from the Sun as a function of time for
periodic orbit M5-1,

Distance from the Sun as a function of time for
periodic orbit M5-2,

63
73

73

77

78

79
88
89
91
92
93
105
105

106




ix

5-4 Distance from the Sun as a function of time for

periodic orbit M6-1. 106
5-5 The interplanetary trajectory legs of periodic

orbit M4-1 shown in a Sun-centered, inertial

coordinate frame, 107
5-6 Periodic orbit M4-1 shown in the Sun-centered

coordinate frame which rotates with the Earth

in its orbit, 108
A-1 Lambert solution selection for an interplane-

tary trajectory. 133
A-2 Lambert solution selection for a symmetric

return trajectory. 133
Tables page
1-1 Approximate relative periods of Earth, Venus,

and Mars 11
3-1 HNumber of planetary periods and departure angles

for symmetrii returns obtained from the simple model

of Hollister . 52
5-1 Statistics of periodic orbits M4-1, M5-1, and
A-1 The arrangement of a series of HR before and

after one HR according to LEHR(I). 131
C-1 The number of combinations NT of r elements

from a population n with repTacement and without

regard for order. 164
References ' 205

Biographical Sketch ‘209




LIST OF SYMBOLS

Abbreviations
® --Sun

@ --Earth

Q --Venus
d——Mars
E--Earth
M--Mars

a.u.-—-astronomical unit

EMOS--Earth Mean Orbital Speed unit which is equal to 2w a.u.
per year or 29.77 km./sec. or 97,702 ft./sec.

RMS-~root mean square

FR-=full revolution return

HR--half revolution return

SiSR--symmetric return which traverses the Sun more than i
times but which is shorter than the length indicated by
linear analysis (about (i+0.45) revolutions or planetary
periods)

LiSR-~-symmetric return which traverses the Sun more than i

' times and which is longer than the length indicated by

linear analysis

IP--interplanetary trajectory

Coordinate Systems

R,G,Z--orthogonal coordinate system which is usnally associated




xi

with a planet and which has the coordinate directions
respectively pointing away from the Sun along the Sun-
planet line (R), in the plane of the planet's orbit
pointing approximately in the direction of the planet's
motion (G), and vertical to the planet's orbital plane
to complete the triad

P,T,Z--orthogonal coordinate system which is usually associ-
ated with a planet where the P-axis points approximately
away from the Sun in the plane of the planet's orbit,
the T-axis is aligned with the planet's velocity vector
and points in the same direction, and the Z-axis is the
vertical to the planet's orbital plane and is the same
Z-8axis as in the above triad. This coordinate system
is exactly the same as the R,G,Z system for planets in
circular orbits.

Quantities

a--semimajor axis
a1~—semimajor axis of the orbit of planet 1.

AIO—-the angle between the incoming hyperbolic excess velocity

and CO corresponding to a minimum TO

AINT—-the size of one of the equal M-l or M turns between
points on the full revolution return locus where M is
the number of full revolution returns

AOI——the angle between C. corresponding to a minimum TI and
the outgoing hyperb%lic excess velocity

CA—-cone half angle

C,--specifies the point on the full revblution return locus
corresponding to TI. Can be an angle around the locus

COF-specifies the point on the full revolution return locus
corresponding to TO' Can be an angle around the locus

D--maximum date of interest as defined by Equation 4-1
e-~-eccentricity
E--eccentric anomoly

f--true anomoly. In particular, the true anomoly after a
geries of FR and one HR.




xii

fo~~true anomoly before a series of FR and one HR

f*--incorrect true anomoly corresponding to a point near the
end of a series of FR and one HR. Equal to f if e=0

M--the number of full revolution returns in a row, either
alone or before or after a half revolution return
Also, the mean anomoly. In particular, the mean anomoly
after a series of FR and one HR
MO——mean anomoly before a series of FR and one HR

M*~-incorrect mean anomoly corresponding to a point near the
end of a series of FR and one HR. Equal to M if e=0

N--basic dimension of the numerical problem. Also, the dimen-
sion of the column matrices v, t, and O

n--number of synodic periods. Also, the population of elememts

N--the number of combinations of elements taken r at a time
from a population of n elements with replacement and
without regard for order

O--column matrix of all zeros

Pl-—period of planet 1

g--convenient symbol for the quantity (4 sin 24t - 64qt)

r--convenient symbol for the quantity (2 - 2 cos 24%)
Also, the number of elements taken at & time

ry--one of n non-negative integers which must be less than or
equal to n

s--convenient symbol for the quantity (sin 24t)
T--time from opposition as defined by EQuations (4-2) and (D-1)

t--independent variable of time measured in units of the
planetary period.

t--column matrix of encounter dates

ty-~the 1°" element of this column matrix which is the i®P
independent date of planetary encounter
L ey~ —improved estimate of the desired %

Td-—length of a series of direct returns



xiii

TI-—turn angle from the incoming hyperbolic excess velocity
vector onto the locus which produces a full revolution
return. Always starts out as the smallest such angle

TO==turn angle from the locus which produces a full revo-
lution return to the outgoing hyperbolic excess velocity
vector. Always starts out as the smallest such angle

TS--length of a synodic period
T

evel --the length of time required for the periodic orbit
JC1&o repeat or almost repeat

T --time spent on a series of direct returns at Earth
T --time spent on a series of direct returns at Venus

v--column matrix of hyperbolic excess speed differences at
the encounpered planets
th element of this column matrix of speed differences

out. ~ Vin,

i i
v,  -—-hyperbolic excess velocity of arrival at the ith

iny planetary encounter

v.--the i
1 (=V

th

v -~-hyperbolic excess speed of departure at the 1

outi planetary encounter
VH--hyperbolic excess speed relative to the planet of encounter
VP—-speed of planet relative to the Sun

V_--R component of hyperbolic excess speed measured in units
of the planet's orbital speed (in EMOS for Earth)

V_--G component of hyperbolic excess speed measured in units
of the planet's orbital speed (in EMOS for Earth)

x--distance in a.u. in the R direction of a vehicle from
a planet such as Earth in circular orbit around the Sun

y--distance in a.u. in the G direction of a vehicle from
a planet such as Earth in circular orbit around the Sun

€ --step size variable

AL--gravitational constant for an orbit around the Sun
CT--time of perihelion passage

( .)—-indicates the first time derivative of ( )

( .)——indioates the second time derivative of ( )




CHAPTER 1

INTRODUCTION

1.1 What is Meant by the Term Periodic Orbit

What one means by the term "periodic orbit" is an inter-
planetary, free-fall trajectory which visits one or more
planets ana continues to visit these same planets repeatedly
for an indefinite period of time. Hach planetary encounter
is assumed to involve a flyby maneuver by which the velocity
vector of the vehicle relative to the encountered planet is
rotated in space; that is, rotated by the effect of the grav-
itational mass of the encountered planet. The planets are to
be visited repeatédly in a certain sequence which involves. a
certain order for the planetary encounters and certain spe-
cific types of trajectories between the planetary encounters.
The periodicity of the periodic orbit comes from the fact
that the certain sequence of encounters repeéts indefinitely
and from the fact that one has at least approximately repeat-
ing absolute or felative positions of the encountered planets.

Important qualities of these periodic orbits are that
they require no propulsive thrust except for guidance once
they are established and that they definitely require guid-

ance in order to be maintained. 0On a periodic orbit during




a flyby maneuver, no thrust is needed except for guidance,
because each flyby maneuver in a periodic orbit must be
designed as an unthrusted flyby which does not intersect the
surface of the planet. This quality of a periodic orbit is
an essential one. Interplanetary periodic orbits are expected
to be unstable in the sense that any small deviation in posi-
tion or veloxity from the periodic orbit will result in an
increasing departure from the periodic orbit and eventual
breakdown of the periodic orbit scheme. Because of this
instability, continuing guidance including velocity correc-
tions is necessary to maintain a vehicle on or near the
periodic orbit.

The types of trajectory legs which are used to make up
the interplanetary elements of a periodic orbit may be
broadly divided into two categories. These two categories
are interplanetary trajectory legs and what are called direct
return trajectory legs. A great deal of effort has been
expended in the past in the examination of interplanetary
trajectory legs, because these are basically the trajectory
legs which get one somewhere in the solér system other than
back to the place from which he started. The other class of
trajectories, the direct return trajectories, only transport
one back to the planet which he last left. Such direct
returns are very useful, however, as a part of periédic
orbits, because they make it possible for a vehicle to remsain
in the vicinity of one planet without going on to another

one until a favorable opportunity presents itself when the



planets are in the desired relative position. A series of
direct returns can also help to turn the hyperbolic excess
velocity vector in the desired direction for the transfer to
the next planet by supplying several additional flybys of
the planet so that the desired turn can be made in several
smaller steps and hitting the planet during a flyby can
thereby be avoided. Because interplanetary periodic orbits
have not been considered for very long, direct returns have
been neglected; and hence, the third chapter is devoted to
direct returns..

A periodic orbit is the logical extension of having an
'increasing number of planetary flybys in a single trajectory
with a series of planetary flybys. Various people4’9’lo’ll
have found trajectories which depart from and return to Earth
after having encountered either Mars or Venus or both.
Minovitchl5 has found a mission involving six flybys at Earth,

5

Mars, and Venus. VanderVeen” has found multiple flyby tras
jectories which depart from and return to Earth and inter-
mediately encounter Venus, Mars, and Venus a second time.
Then, in order to increase indefinitelylthe number of plan-~
etary encounters, one comes to the idea of a periodic orbit
joining several planets.

Hollisterl and Menning2 discovered periodic orbits con-
necting Earth and Venus which repeat after 16 years. Their

periodic orbits involve direct return trajectories at both

Karth and Venus connected through flyby maneuvers at the




planets with feairly quick transfers between the two

planets. Ubteining periodic orbits which connect Earth and
Mars can be expected to be a more difficult and more compli-
cated task, because the small mass of Mars means that less
change in velocity or rotation of the velocity vector is
available from a flyby of that planet. In addition, the
much larger eccentricity of the orbit of Mars over that of
Venus might be expected to cause difficulty in numerically
célculating the periodic orbit.

Brouckel6

has found periodic orbits in the Earth-Moon
system. His problem, however, is considerably different
from the problem of this thesis, as his mathematiqal model
involved integration of three-body equations of moticn.
This thesis and the work of Hollister and Menning involve,
however, only two-body equations of motion coupled with a

patched conic approximation to handle the planetary encoun-

ters.

1.2 Possible Applications of Periodic Orbits

Une might ask at this point, "Of what possible use are
these periodic orbits?” Hollisterl presents éeveral possible
apélications. Probably the most obvious application for
periodic orbits is that of a manned, reuseable interplanetary
vehicle. A fairly large and comfortable vehicle could be
used efficiently for interplanetary travel, because it would
be reuseable and no additional thrust would be required

(except for guidance) once the vehicle had been set upon the



desired periodic orbit. Of course, additional wvehicles would
be necessary to shuttle personnel and material between the
vehicle on the periodic orbit and the surface of the encoun-
tered planets in order to complete the interplanetary trans-
portation system.

Hollisterl sugeests several more less obvious uses for
a vehicle following a periodic orbit. He suggests that it
could also serve as a communications link, a rescue station,
or an interplanetary navigation beacon. In time, more uses

will probably be discovered.

1.5 Approximations Used in This Thesis

There are two main assumptions or approximations on
which the work of this thesis (and the work of Hollisterl
and Menningg) is based. The first approximation is that of
patched conic trajectories in which the size of the sphere
of influence of the flyby planet is neglected. The second

approximation involves the periodicity of the solar system.

1.%.1 The Patched Conic Approximation

The patched conic approximation involves the use of
oniy two-body conic trajectory segments in order to form
a good approximation to the periodic orbit which is desired.
For a trajectory which involves close approaches to several
planets, one can divide the trajectory into segments which
are Sun-centered and connect the planetary spheres of influ-

ence and into other segments which describe the trajectory




inside the sphere of influence of a planet as a hyperbola
relative to planet-centered, non-rotating coordinates. The
Sun-centered segments are considered to be only under the
influence of the Sun and are generally elliptical with
respect to Sun-centered, non-rotating coordinates.

In addition, the approximation is made that the size of
the planetary sphere of influence may be neglected. The
radius of the sphere of influence of Earth is approximately
0.006 a.u. while the radius of the sphere of influence of
Mars is approximately 0.004 a.u. The smallness of these
planetary spherés of influence relative to the astronomical
unit suggests perhaps that their finite radius may be neglec-
ted for purposes of approximately calculating trajectories
involving a series of planetary flybys. A more detailed

investigation2o

also indicates that this approximation is a
reasonable one.

One would like to know the net effect of the patched
conic approximation discussed here which neglects the size
of the sphere of influence. The size of differences between
quantities on the exact trajectory and quantities on the
approximate trajectory are the measure of the effect in
wﬁich one is interested. In particular, there is interest
in possible changes in encounter dates, hyperbolic excess
spéeds, and minimum passing distances for multiple flyby
trajectories. The changes in the end velocitlies and times
for a simple trajectory between two planets are only & rough

indiecation of the net changes in which one is interested.




Not much work has been done in obtaining accurate results

28 is

for multiple flyby trajectories, although Bayliss
working on a method to obtain these desired accurate results.
An indication of the changes which can be expected when
going from the patched conic approximation to ain accurate
integrated trajectory is given by the work of Sturms and

Cutting17

which compares the results of the approximate

and the accurate calculations for three different Karth-
Venus-Mercury trajectories. The differences at the encounter
at Venus are less than one day for the time of closest
approach, less than 0.03 venusian radius in the distance of
closest approach, and less than one unit in the third signif-
icant digit of the hyperbolic excess speed. The conclusion
is that the patched conic approximation is sufficiently accu-
rate for the purposes of this investigation.

In short, for the purposes of this thesis, trajectory
segments are to be calculated from planetary center to plan-
etary center. From this calculation, hyperbolic excess velo-
cities relative to the planet may be approximately deter-
mined. If the planetary flyby is to be accomplished, the
hyperbolic excess speeds relative to the planet before and
after the encounter must be equal. In addition, the angle
between the incoming hyperbolic excess velocity vector and
the outgoing hyperbolic excess velocity vector must be suf-

ficiently small so that the flyby can be accomplished with-




out hitting the planet; this requirement is checked only
after the hyperbolic excess speeds have been approximately
matched. In summary, this approximation means that one
models a planet as a moving massless point in space from
which an impulse of acceleration is available by passing
through the point. The impulse is constrained such that the
speel relafive to the moving point must be the same immedi-
ately before and immediately after the encounter with the
point.

1.5.2 The Periodicity of the Solar System

An important requirement for the existence of periodic
orbits joining two ormore planets is that the relative posi-
tions and the relative velocities of the encountered planets
and the 3Sun must repeat after a certain length of time. In
order for this to occur for planets in general elliptic,
mutually inclined orbits, the absolute posSitions must fepeat.
Uf course, for any real case, the absolute or even the rela-
tive positions of two or more planets and the Sun will never
repeat exactly. If one approximates the elliptic orbits of
two planets by circular orbits in the same plane and having
thé same periods as the elliptic orbits, then the relative
positions and veiocities will repeat exactly every synodic
period. The synodic period in this circular coplanar case
will be the same as the average synodic periocd for the ellip-
tic, inclined case. An integer number of these synodic

periods will be the length of a basic repeating cycle of a



periodic orbit involving these two planets in the circular
coplanar case. Conditicns are similar with three planets
instead of two, with the additional complexity that there
must exist three numbers which differ by integers, which are
associated individually with each of the three planets, and
which, when multiplied by the period of the corresponding
planet, each produce the same time. This period of time for
the three planets is analogous to the synodic period for two
planets in circular coplanar orbits and is the time required
for the relative positions of the three planets to repeat.
The length of time for the repeating cycle of a periodic
orbit will, ih general, be an integer multiple of the length
of time after which the relative positions and velocities
of the Sun and the planets of concern repeat. In the circu-
lar coplanar case, the basic repeating cycle must be some
integer multiple of the synodic period, or, in the case of
three or more planets, some integer multiple of the basic.
time for the repeat of the relative positions. In the ellip-
tic inclined case, the time for the basic repeating cycle
must be some integer multiple of the time after which the
absolute posgsitions of the planets of concern and the Sun
repeat. In fact, in the case of a periodic orbit involving
two planets, the time for the elliptic inclined case to

repeat is equal in synodic periods, to the pgroduct divided by

the greatest common divisor of two integers. These two numbers

are the number of synodlc periods for the sbsolute planetary

positions to repeat and the number of synodic periods
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involved in the basic circular coplanar scheme.

In reality, truly periodic orbits which join twoc or
more planets do not exist, because the absolute positions
of the oun and the planets involved will never repeat
exdactly. However, in the case of two planets, one would
expect that an indefinitely long series of unthrusted flybys
would exist which are arranged in the same scheme as in the
circular coplanar case in which the relative positions and
Velocities repeat exactly. OUne would also expect that the
dates which are calculated for a series of flybys following
the scheme of a periodic orbit and which have the initial
and final speeds the same and which last the correct number
of synodic periods will give a very good approximétion to
the d=tes of encounter for the continuous series of flybys.

1 and Menningg, however, took care of this perio-

tiollister
dicity problem by modeling the planets' orbits as truly
vperiodic.

In the case of periodic orbits involving three planets,
one would expect that they would not exist at all, because
the relative times of important planetary oppositions invol-
ving planets in different pairs would not continue to have
the same timing relative to each other. One would expect,
however, that a very long series of flybys could be found
from an approximately periodic scheme involving three planets.

One might be able to find an indefinitely long series of

vplanetary flybys involving three planets by changing the
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basic scheme of the series of encounters when the relative
alignment of oppositionsstrays too far from the desired
spacing.

The planets of interest for this investigation are
Barth, Mars, and Venus. To within an accuracy of a few

degrees, the absolute positions of these three planets and

the un repeat after 32 years. In that period of time HBarth

makes %2 revolutions of the Sun, Venus makes 52, and Mars
makes 17. Hence, in the circular coplanar case, the rela-
tive positions and the relative velocities approximately
repeat after 6.4 years. In this shorter period of time,
Barth makes 6.4 revolutions of the 3un, Venus makes 10.4,
and Mars makes %.4. These figures imply certain felations
also concerning avetrage synodic periods. The relative
positions and periods are indicated in Table 1-1 and in

Figure 1-1.

planet Earth Venus Mars
1. revolutions of Sun
in %2 years 52 b2 17
2. synodic periocds rela- _ 20 15
tive to Earth in 32 yr.
3, ?evqlutions of Sun 6.4 16.4 3.4
in 6.4 years
4. synodic periods rela- _ m 3
tive to Earth in 6.4 yr.
5. approximate period 1 8/13 32/17

in years




approximate synodic
period in years
.eo in days

more exact syn&dic
period in days

row 4 times row 6
in days

row 4 times row 7
in days

Table 1-1. Approximate

d

+O @

Figure 1-1.

and Mars.
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32/20=1.6
584.4

58%.92

2537.6

2335.68

32/15=2.133
779.2

779. %

2337 .6

2339.82
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Spacing of the planetary alignments.

(Vertical lines indicate oppositions between the
planets indicated.)(Obtained from Reference 1.)
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The alignments indicated by vertical lines in Figure 1-1
do not occur at exactly the same instants which the figure
tends to demonstrate; the time of the opposition of Mars
does not correspend exactly with the time of the superiozr
conjunction of Venus as the middle sketch of Figure 1-1
indicates. And, the relative timing of an opposition of Mars
and a superior conjunction of Venus does not remain the same.
The times of opposition vary due to the eccentricities of
the planets' orbits. Also, the relative timing tends to
drift slightly with each passage of 6.4 years. The charac-
teristics of this drift are indicated by the differences
among; the numbers in rows 8 and 9 of Table 1-1. The next
time that an opposition of Mars will correspond ciosely with
a superior conjunction of Venus will be some tire around
A.D. 1995, according to ephemerides which ignore the’
effect of planetary eccentricities. The amount of drift
in the relative times, which is required before the above'
arrangement of alignments occurs again is indicated by the
asterix in Figure 1l-1--the minimum amount of drift before
a superior conjunction of Venus again cbrresponds with an

opposition of Mars. This drift is,

(1/3 - 1/4) 2337.6 days =
(77902 days - 584.4 days) = 195 days (l"'l)

BEvery 6.4 years the drift that occurs is,

2%239,82 days - 23%5.68 days = 4.14 days (1=2)
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The total time for this drift to be accomplished is,
(195/4.14) 6.4 years = 300 years (1-3)

The followineg time that an opposition of Mars will correspond
closely with a superior conjunction of Venus will be some
time around A.D. 2295.

One might conclude from this discussion that opportuni-
ties for multiple series of three-planet flybys will ecccur
over only a few years once every 300 years. Such is not
necessarily the case. The drifts in the relative planetary
alignments are quibte slow; and for a period of about 40 years
before and 40 years after the time of alignment according to
the above calculation, the effects of the eccentricities of
the planets' orbits can cause a greater change in the rela-
tive timing of alignments than can the drift. Therefore, for
some time in the vicinity of each period of accurate align-
ment, real repeating flyby trajectories will be quite similar
to those based on the assumption of a periodic solar system.

Remaining chapters discuss numerical techniques for
determining periodic orbits, direct return orbit which can
be linked together into series which last many different
lengths of time, several possible approaches for finding
both two- and three-planet periodic orbits, and a detailed

presentation of some successful Earth-Mars periodic orbits.




2.1

15

CHAPTER 2

NUMERICAL TECHNIQUES

The Bssic Numerical Problem

The basic numerical technique for obtaining the encounter

dates for a periodic orbit is the iterative solution of a

system of transcendental relations. OUne must first choose

initial guesses for the N independent dates which determine

the periodic orbit. These N dates then determine uniquely

the positions of the encountered planets at the times of

encounter. The trajectories between the encounter points

sare uniquely determined through the solution of Lambert's

problem. The hyperbclic excess velocities are consequently

determined by the velocities at the ends of the interplane-

tary trajectory legs. Une then has a difference in hyper-

bolic excess speed before and after each plametary encounter;

this results in N speed differences. The remaining problem

is-

be

to

if

to change the N dates so that the N speed differences can
made to approach 2ero.

Only after the N speed differences are made very close
zero are the conditions during each flyby checked to see
the vehicle always misses the encountered planets.

The iteration procedure to make the N differences in
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hyperbolic excess speed zero can be summarized by some very
simple expressions. The N independent dates can be indicated
by a mathematical column matrix t and the N differences in
hypertolic excess speed can be characterized by a column
matrix v. Also, v is a function of t. Then the desired
relationship for the zeroing of the N speed differences can

be summarized by the expression,
v(g) = 0 (2-1)

In order to know how to change % to make zero all of the
differences in speed, one can form by numerical differencing
an approximation to the matrix of all first derivatives
which may be indicated by [g—%]. Then there are two basic
iteration schemes which are us;d in the computer program to
develop periodic orbits and which were used in the computer

program of Menningg. The first is called a steepest descent

iteration,

a z(i:_)]T
=t - G[—a—%—'— ’\l(t> (2-2)

-1
-t - "a:{—] v(t) (2-3)

Enew

The € in Equation (2-2) is chosen separately for each step.
It is chosen relatively arbitrarily but so that some measure
of the convergence such as X(E)TX(E> actually decreases in
value with each step. The step size is also reduced, if

necessary, in the Newton-Raphson iteration in order to
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assure convergence.
d v(g)
The determination of the matrix |-s—e—| by numerical

d t
differencing methods requires much less computation in this
case than it does in the general case. If one member of the
column matrix v is indicated by Vi then the functional

dependence of each member of the speed difference vector on

the vector of dates t may be indicated by,

vi = V(51 By Byyq)

(b5 5,90 - Vini(ti-l’ ts) (2~4)

[}

Vou.t.l
Each speed difference is a function of only three dates as
opposed to the general case where one has a functional depen-
dence on all N independent variables. The relative diffi-
culty may be expressed by counting the number of trajec-
tories which must be computed. N trajectories must be compu=-
ted in either case in order to determine v(t). In the pres-
ent case, only 2N gdd%i%onal trajectories must be computed

v

in order to form [fa_fm_] from one-sided numerical differ-

encing. In the general case, however, one-sided numerical
differencing would require the-additional calculation of N2
trajectories or equivalent functions.

This investigation could involve considerable experi-
mentation with different iteration techniques. However, it
was felt, after a review of the numerical techniques avail-
able, that it was much more important for the purpose of

this imvestigation to concentrate on obtaining good initial

guesses for possible periodic orbits. The numerical
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techniques used are primarily those of Menningg, although

several extensions of his work are carried out. Many of

these techniques are demonstrated in the computer program

of Appendix A.

A summary follows of what the computer program does

to solve the numerical problem:

l.

Read in data containing the starting encounter
dates.

Solve Lambert's problem for the N or N+1 trajec-
tories and form the column matrix v of speed dif-
ferences vy = Vouty — Viny at the planetary
encounters. Each solution must go through the
steps listed below under the subroutine called
"Lambert."

If this is not the first time through, check that

N
vTv = ZB Vi 2 has been reduced in value. If it

has not halve the step size and do (2.) again.

N
If lv | is less than the requirement for conver-

gence, skip down to number (8.).
dav

Form [a—%} by numerical differencing, solving

Lambert's problem as needed (2N more times).

Take a Newton- Raphson step if. ig |v l is less than
some preset value. Otherwise take a steepest des-
cent step.

Go up to (2.) and repeat steps ( (2.)-(6.) ) until
convergence is attained at step (4.).

Compute the turn angle and passing distance at each
planetary encounter and print the results.

Lambert (subroutine):

l.

Begin with the encounter dates at each end of the
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ith trajectory.

2 Calculate the planetary positions and heliocentric
velocities at each end of the trajectory to deter-
mine the space triangle for which one must solve
Lambert's problem. Also determine the time of
flight.

3. Iterate to determine the semimajor axis of the
transfer trajectory.

4, For this transfer trajectory calculate the helio-
centric velocities at the ends.

5. Compute Vouty and Ving4l by differencing the helio-
centric vector velocities of the encountered planets
and the trajectory ends.

6. ‘Return these gquantities to the main program.

2.2 Convergence Criteria for the "Ends" of a Periodic Crbit

A real periodic orbit has no ends; but as mentioned
previously, there is no such thing as a truly periodic orbit
joining two or more planets. When the approximation of a
periodic solar system is dropped, the computer program needs
some criterion for handling the ends of a multiple flyby
trajectory in order to approximate a periodic orbit.

A computer program to find a periodic orbit does essen-
tially what was discussed in Section 2.1; but some criterion
must be chosen for deciding the first, last, or both hyper-
bolic excess speed differences. The computer program must
essentially choose the dates for a series of unpowered fly-~

bys and must operate on some criterion for the speed
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t = t, + T (2-5)

N+1 1 cycle

This last requirement implies that the computer program
is to perform its calculations for N+1 encounters and N-1
{flybys and N trajectory legs. For encounters 2 through N,
the speed difference at the planet is obvious; but an addi-
tional speed difference is necessary to defiane the numerical
problem. There are two ways in which this speed difference
has been defined for this investigation.

The first method was to supply an extra flyby, inter-
planetary trajectory, and planetary encounter. One would
then have N+2 encounters, N flybys, and N+1 trajectory legs.
The N flybys supply the N speed differences for the numer-

ical problem, and the dimension of the problem is kept

equal to N by the two requirements,

t t, + T

]

1
t2 + T

N+1 cycle (2-6)

t

N+2 ~ cycle

t

These two requirements mean that the N+1° trajectory leg

nust be exactly equal in time to the first trajectory leg.
This method was used by Menning? in hisicomputer work. For
the purposes of this discussion, let this method of obtaining

th

the N speed difference b= known as the "A" modification

to determine the "end" speed differences for a periodic
orbit.

th

The second way used to supply the N gspeed difference

was simply to difference the speeds at the ends of the
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differences at the ends of the unpowered series of flybys in
order for the series to approximate a periodic orbit.

A basic criterion for the "ends" of the periodic orbit
is the length of time in which the basic cycle of the periodic
orbit repeats or almost repeats. This length of time will

be designated here by the symbol T If there are to

cycle’
be N independent dates in the periodic orbit problem, and
if the dates are to be designated by ti’ then the

requiremént for the scheme to repeat or almost repeat in

the time T is indicated by the requirement,

cycle
multiple flyby trajectory. In other words, one will have
N+1 encounters, N-1 flybys, and N trajectory legs. The NoB
speed difference is obtained by differencing the hyperbolic
excess departure speed at the date tl with the hyperbolic
excess arrival speed at the date tN+l’ Let this method be
known for now as the "B" modification to determine the "end"
speed differences for the periodic orbit.

These two differences in calculation method have no
effect if the solar system or the solar system model is
exactly periodic in the sense that the relative positions
and velocities of the planets of interest and the Sun repeat
exactly after a certain length of time. However, they will
make a difference for a more realistic model of the solar

system.

One would expect, even with an accurate solar system




22

model, that as the dimension of the problem is increased
from N to 2N to 3N to 4N, etc., that the encounter dates
near the "middle" of this increasingly long series of flybys
would converge toward the actual encounter dates correspond-
ing to the indefinitely long series of flybys independent of

which model one used for the "end" speed differences.

2.3 Models of the Solar System

There are several different mathematical models used

for the solar system in the investigation. These models
differ in the ephemerides which were used for the three

planets of interest: FEarth, Mars, and Venus. The different

models used are probably best presented in cutline form.

I'he basic reason for using different mocdels is to obtain
convergence of the numerical problem while proceeding from
simplified models of periodic orbits to more accurate aprox-
imations. The different models of the solar system for

the planets, Barth, Mars, and Vénus, are outlined as
follows:

I. Civcular coplanar. Eccentricities and relative

inclinations are set equal to zero.

A. Approxihate values for semimajor axis a and
period P in order to achieve periodicity.
PC{: 32/1%7 year, ad'= (52/17)5/2a.u.

P9= 8/1% year, ag = (8/15)5/2a.u.

1. BExactly symmetric. A date of martian
opposition corresponds to a date of

venusian superior conjunction.
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2. Approximates the near future. The rela-
tion between the dates of martian oppo-
sition and venusian superior conjunction
is determined by an approximation to
reality at an arbitrary point in time
which is taken to be in the near future.

B. Values for the semimajor axis and period

correspond to the correct numerical vaiues.

iI. Eccentric inclined, exactly periodic. The eccen-
tricities and relative inclinations are made eqgual
to the correct numerical values at one time while
the periods and semimajor axes are made equal
to the values given in (I1.4.) above. With these
values, the absolute positions of Earth, Mars, and
Venus repeat exactly after %2 years.

1. Corresponds to (I.A.1) above.
2. Corresponds to (I.4.2) above .

1TII. Eccentric.inclined, constant element. All of
the orbital elements of the three planets, Earth,
Mars, and Venus, are set egual to the instanta-
neous mean elements obtained from Reference 7 or
8. UWith this model, one is also interested in
how the speed differences at the "ends" of the

periodic orbit are defined.

A. The "A" modification to determine the "end"

speed differences is used. (% =t, + T

N+1 1 cycle
and ty, o = by + Tcycle')
B. The "B" modification to determine the "end"
speed differences is used. ‘(tN+l =ty + Tcycle

and the arrival speed at tN+l is subtracted

from the departure speed at t; to form the

NP speed difference.)
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These last two differences in the numerical technique
do not affect solar system Models 1. or 1ITI., because both
oI these first two models are exactly periodic. Eecause
Mcdel III. most closely approximates the real solar system,
its use can be expedted to give the most accurate approvima-
ticn to the actual dates of the continuous, indefinitely
long series of flybys which is based on the pericdic orbit.
That is, both versions of Model III. can be expected to
sive the most accurate estimates of the dates of any model
use? here. In all cases, the patched conic approximation of
section 1.2.1 above is used.

The distinction between (1.) and (2.) under Model I.A.
and Model II. can he expected to make no basic difflerence if
the periodic orbit only visits two planets. The options
(1.) and (2.) are not applicable to Model I.B.,
because this model includes the effect of the drift in the
relsitive timing in the oppositipns of Mars and suiverior
conjunctions of Venus; only the efiects of eccentricity and
relstive inclination are neglected.

Some of the reasons for considering so many different

solar system models are discussed in the following section.

2.4 Complexity of the Function Space

In the expression v(t), one seems to imply & simple
functional relationship between the N encounter dates and

the N speed differences. The actual rélationship is neither
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simple nor neat, and the numerical solution will frequently
nct converge to the desired solution of obtaining the ti°s
such that v(t) = O.

In the space of the N ti's and one additional
dimension for the value of the function, one can either
think of the N hypersurfaces v(t) or of the single hyper-
surface defined by (KT(E>X(E)>- The function space is of

st

dimension N+1, and the N+l dimension is the function

value of interest. If one thinks of the N hypersurfaces
detfined by v(t), then the solution desired is that point in
the N dimensional space of all the t's such that all

of the speed differences (the vi's) are equal to zero. If

T

|
one thinks of the single Lypersurface determined by v'v,

then the solution which one desires is a minimum such that

T T . : s .
v’y = O. This minimum is an absolute minimum, since the

expression XTX is a positive definite form. In general, for
a very complex function, one would expect several local minima
in addition to at least one absclute minimum. Both of these
ways of thinking of the problem.are equivalent, but they
result in the visualization of different surfaces.

Cne can obtain some idea of the complexity of the
function Dby looking at the published trajectory_chartsq’8’9,

remembering that one is now primarily interested in the

speed differences at the N flybys given the N dates, and
remembering that one wants to find N dates such that all of
the speed differences are zero. The complexity in the
appearance of the speed contours on the trajectory charts
indicates'the complexity of the function. The fact

that the speed contours are very close together in some
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places and far apart in other places sugrests also that
one could have difficulty in selecting the step size

to use in order to obtain the differences to be used ss
approximations to the matrix of first derivatives.

The complexity of the functiorn is expected to
be increused by increases in orbital eccentricities and
mubual inclinations for the planets. Conversely, the
circular coplanar case would be expected to resukt in a
somewhat less complex function of encounter dates.

The increased complexity with the eccentric

inclined case is pnartially caused by the increase in the

basic dimencsion N of the problem due to the lengthened time
before the relative positions and velocities repeat. However,
an even more pasic cause of the complexity of the problem is
due to the very large increases in the hyperbolic excess
speeds for transfers near 180°. This can result in non-
converegence of the numerical problem in the eccentric

inclined case, in spite of starting with dates which would
converge immediately in the circular coplanar case.

A method of dealing with this convergence difficulty
is to increment the eccentricities and mutual inclinations
of the planets' orbits in small steps while going from the
circular coplanar case to the eccentric inclined case. OUne
should start with the encountef dates for the circular
coplanar case and use these dates in the computer program

with very small values for the eccentricities and mutual
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inclinations. Jlhen, with convergence in this case, one
should use these new numbers for the encounter dates in the
computer program with slightly larger values for the eccen-
tricities and mutual inclinations. Cne should then ccntinue
in this manner until the correct values for the eccentrici-
ties and mutual inclinations have been reached. In other
words, one should so from the circular coplanar case (model
I.) to the eccentric inclined case (mcdel II. or model 11I.)
in seversl steps. The number of steps, the size of the stevs,
and whether the eccentricities and inclinations are
incremented proportionallly should be determined by the
investigator by practical considerations. Three or four
proportional steps in eccentricities and inclination were
found adequate for the worst cases in this investigation. A
more general principle, of which this technique may be considered
a special case, is that one should not try to solve a numerical
problem with an answer "too different" from the initial guess.
This method of incrementing the eccentricities and
inclinations only is a method of dealing with convergence
problems; it does not guarantee convergence. In fact, for
the periodic orbit scheme which has been labeled M5-3 in
Appendix E, a solution apparently does not exist in the
eccentric inclined case, at least in the region of the cir-
cular coplanar solution. For this particular periodic orbit
scheme, convergence was achieved quite readily in the cir-

cular coplanar case and in the case with the inclination and
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eccentricities at sbout one quarter of their actual values.
However, with these parameters at about half of their actual
values, no convergence was achieved. Then, the parameters
were incremented in smaller amounts between these two values.
In each case, the encounter dates with which each attempt was
started were the the converged dates for the parameter values
set to the values just below the ones tried. With the smaller
increments in the parameter values, the problem did converge
with the parémeter values equal to about 0.4 of their

correct values but did not converge on the second attempt
with the parameter values equal to about 0.5 of the

correct values. This behavior seems to indic:te that a
solution to the problem of the type labeled MS5-3 simply does
not exist for an inclination and eccentricities above cer-
tain voelues. This apparent lack of a selution is ancther
indication of the complexity ¢f the function under study.

2«5 Other Numerical Problems

There are several other numerical problems about which
cne might concern himself in the search for periodic orbits.
These are all problems which have been recognized but which
have not been pursued much further. Better handling of
these problems would result in a computer program which would
give better results.

As was mentioned above, one could explore the vossibility

of using different convergence techniques in the search for
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periodic orbits. OUne method, consisting of simpl
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along the coordinuates (the different encounter da
cessively in a cyclic fashion, may turn out to be o satis-
factory one in terms of computer time, because a search
involving a change in one date does not involve very much
recalculation. In any case, different methods of numerical
solution could be explored which make use of the unigue pro-
perties of this particular problem.

Une would desire a Lambert problem numerical solution
which would give a continuous solution from the elliptic case,
through the parabolic case and into the hyperbolic case
particularly for periodic orbit attempts which involve
Jupiter or planets even further out in the solar system.
Béttin6’22*25 has done a great deal of work with this prob-
lem, and his latest method25 probably offers the most prom-
ise. A better numerical solution to the space triangle or
Lambert problem could also help to relieve some of the
numerical difficulties associated with transfers near 180°
which occur even in the circular coplanar case.

Another croblem is that of obtaining better ephemer-
ides for the planets. More accurate numbers for the plaunets
could easily be included by using a published series expan-

7

sion’ for the instantaneous mean orbital elements. In addi-
tion, the angles could be measured from the instantaneous
equinox instead of from the equinox of some arbitrary year

guch as 1960.
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A final problem is that of the whole question of numer-

ical
be

able

tine in

order to make it easier to chansge the program.

aeveral

accuracy in the

program. It would be advantageous to

to switch into s more accurate, double precision rou-
order to check the numerical accuracy of the results.
fact, there are so many thines which mieht be Adone,
the author were to do them he would begin by rewrit-
program and dividing it into several subroutines in

In addition,

of the sbove mentioned improvements would be

includeld.
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CHAPTER 3

DIRECT RETURN TRAJECTORIES

3,1 Introduction to Direct Return Trajectories

vUf the two main classes of trajectory legs used to make
up periodic orbits or attempts at periodic orbits, inter-
planetary trajectory legs and direct return trajectory legs,
the class which is the subject of this chapter has only
recently been considered to any large extent. This class of
direct return trajectories is a very important addition
which makes possible the existence of periodic orbits. A4s
the nsmes imply, interplanetary trajectories go between two
dirferent planets, and direct return trajectory legs return
to the planet from which thney departed last.

Beyond this, the class of direct return trajectory legs
could further be divided into those which go around the Sun
the same number of times as does the launch and arrival
planet and those which go around the Sun a different number
of times than the planet of encounter. GCbviously, the vehi-
cle can only go around the Sun'a number of times which dif-
fers by an integer from the number of times which the planet
traverses the Sun; this is necessary so that the vehicle

will return to the launch planet. An important character-
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istic which distinguishes these two classes of direct return
trajectories is that the hyperbolic excess speeds relative

to the planet can approach zero in the case where the vehi-
cle traverses Lhe Sun the same number of times as does the
planet, while there may be a minimum hyperbolic excess speed
in the case of a direct return trajectory which does not
traverse the sun the same number of times as does the planet.

Further, each of these classes.of direct return tra-
jectories can be divided into three more classes. Under the
classification system of Ross4 two of these classes would be
called symmetric and nonsymmetric direct return orbits.

The third class might be called half revolution direct
returns,

The symmetric rebturns are symmetric in the sense that
the line of apsides of the ellipse which the vehicle follows
is the line »f symmetry for the encounters with the planet--
when the planet is in circulsr orbit around the Sun. A sym-
metric return is also symmetric in the sense that it looks
the same in backward time if one views the orbits from the
oppcsite nide of the orbitsl plane. A symmetric return is
also charscterized by the fact that the point of departure
does not npecessarily correspond to-the point of arrival. Hence the
plane of the vehicle's orbit and the plane of the planet's
orbit must ceincide.

The nonsymmetric return is characterized by the facts

that the points of srrival and departure coincide, that the
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plane of the vehicle's orbit and the plane of the planet's
orbit need not coincide, and that both the planet and the
vehicle traverse the sun an integer number of times between
departure and arrival. In order to launch a vehicle on a
certain type of nonsymmetric return, one must merely be cer-
tain that the vehicle leaves the vicinity of the planet with
a certain heliocentric speed. A nonsymmetric return which
returns after exactly one planetary period will be called a
full revolution return trajectory and will be abbrevisted

by "FR".

A half revolution return traverses the Sun an integer
number of times plus exactly one-half revoluticn. It has
some of the characteristics of each of the other two tygpes.
It looks like a symmetric return in terms of the symmetri-
cal arrancgement around the line of apsides and in terms of
its symmetry in time. However, the points of arrival and
departure and the Sun are colineér so that the plane of the
vehicle's orbit does not, in general, correspond to the
plane of the planet's orbit.

Most of the rest of this éhapter will not concern
itself further with trajectories which do not traverse the
Sun the same number of times as does the planet. These
trajéctories are not expected to be as useful as those which
traverse the sun the same number of times as does the planet,
because in general, they require more time before returning

to the launch planet. However, in certain instances, such
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as in a search for periodic orbits which connect Earth with
@ planet ditfering appreciably in semimajor axis and period
from those of Barth, they could prove quite useful as a part
of a periodic orbit which otherwise would not exist. The
examination of direct return trajectories which do not tra-—
verse the Bun the same number of times as does the encoun-

tered plunet is an area for further study.

2.2 Full Revolution Return Trajectories

3.2.1 General Characteristics of Full Revolution Return

Trajectories

A full revolution return trajectory is one which returns
to the planet of departure after one period of the planet.
A full revolutioﬁ return will frequently be abbreviated as
"PR". In order to accomplish this, the vehicle's orbit must
have the same period around the Sun as does the planet.
This is accomplished, in turn, by the vehicle's having the
same semimajor axis, the same energy per unit mass relative
to the Sin, and the ssame heliocentric speed at the arrival
and departure points as does the planet of arrival snd depar-
ture. At a given encounter point, there are a double infin-
ity of such full revolution return trajectories.

The locus of the tip of the hyperbolic excess velocity
vector (relative to the planet), which will put a vehicle
on such a full revolution return, is the surface of a sphere

which passes through zero and is symmetric about the direc-
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tion of the planet's heliocentric velocity vector at that
point. Three views of this locus are shown in Figure 3-1.
In addition, if one has a vehicle approaching the planet
with some ¢iven hyperbolic excess velocity, and if one
desires to put the vehicle on a full revolution return tra-
jectory immediately after the planetary encounter, then the
hyperbolic excess speed for the vehicle on the full revolu-
tion return is fixed. Then the locus which this fixed
length hyperbolic excess velocity vector must reach is a
small circle on the spherical surface mentioned above. The
fact that this more restricted locus 1is a small circle of
the sphere of the less restricted locus is best demonstra-
ted in Figure 3-1 c¢. In Figure 3-1, VP is the speed of the
planet at the point in its orbit where the encounters take
place, VH is the hyperbolic excess speed at the planet,vand

the cone half angle CA is determined by the formula,

Vi
C, = Arcos (ETG;) (3-1)

The orthogonal coordinate directions P,T,Z indicated in
Figure 3-1 are based on the Z direction as the perpendicu-
lar to the planet's orbital plane and on the T direction
parallel to the direction of the planet's heliocentric
velocity vector at the given point.

Une should also note that.only one of the encounter
dates for a series of full revolution return trajectories

is an independent date; all of the remaining encounter
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Vp
CA --cone
half angle
T /
a. coordinate systems b. locus in the P-T plane
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Vp
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!
]
|
)
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]
, HR !
‘ |
¢. locus in the P-Z plane d. 1locus in the T-Z plane

Figure 3-1. Locus of points of the tip of the velocity
vector for a full revolution return and a half revolu-
tion return.
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dates can be determined uniquely from one of the encounter
dates (to within the accuracy of the patched conic approxi-
mation mentionel in the first chdpter). This interdepen-
dence of the encounter dates is a result of the fact that
the length of the tull revolution return is indeperdent of
the s:eed relative to the encountered planet. Hence, for
the purposes of numerical calculation as in the computer
program of Appendix A, only the first date of a series of
full revelubtion returns need be specified; the remaining
dates are letermined by adding an integer number oi plane-

tary periods to the dste of the initial encounter.

%.,2.2. Turn Angle Selection for a Series of Full Revolution

Returns

Because the turn angles are not specified completely;
that is, because one has one degree of freedom in selecting
the direct return trajectory given the hyoerbolic excess
speed, there is a problem of selecting the angles for a
series of full revolution return trajectories. A criterion
for makine a selection is to maximize the minimum radius of
closest approach which is equivalent to minimizing the maxi-
mum turn angle at the planet for the series of full revolu-
tion return trajectories. Basically, the turn angles are
chosen by picking a number of hyperbolic excess velocity
vectors equal to the number of full revolution returns, all
lyine on the locus which will produce a full revolution
return. This selection may also be thought of as choosing

points on the smsll circle of the sphere shown in Figure 3-1;
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that is, choosing points on the locus which has been speci-

fied by V, and V

H P

such a criterion of minimizing the maximum turn angle
is rot necessary; but it will assure that the vehicle will
miss the planet if it is possible to do so; and it will
assure the investigator that the series of full revolution
returns cannot work, due to the vehicle's hitting the planet
one or more times, if such a series of full revolution re-
turn trajectories is indeed impossible.

In order to better visualize the turn angle selection,
it is perhaps more enlightening to distort the sphere in
velocity space of radius VH dnto a plane. This sphere is
the locus of the tips of all hyperbolic excess velocity vec-
tors at the planet which have a hyperbolic excess speed of
VH’ The locus on this sphere of all hyperbolic excess
velocity vectors of length VH’ which will produce a full
. revolution return trajectory, is a small circle on the sphere.
In fact, the latter locus is the intersection of the sphere
of radius VH mentioned here and the sphere of radius VP
mentioned above as the locus of the tips of all full revo-
lution return hyperbolic excess velocity vectors. The dis-
tortion of this smaller sphere onto a plane. will mean that
different hyperbolic excess velocity vectorg can be repre-
sented by points in this plane, that angles can be repre-

sented by the distances between points in this plane, and

that the locus of full revolution return vectors can be




39

represented by a circle in this plane. The angles will not

be accurately represented in this case, but the basic layout
will be more clearly visualized since the problem is basically
two-aimensional. As the length of the hyperbolic excess
velocity vector has already been determined by the speed rel-
ative to the planet at the ends of interplanetary transfers,
only the angles can be varied. The pluanar representation of
the problem is shown in Figure 3-2.

In order to calculate the turn angles so that one can
pick the set which minimizes the maximum one, it is conven-
ient to express vectors, which produce a full revolution
return, in terms of VH’ the cone half angle, and an angle to
express the position around the full revolution return locus.
Then, incoming and outgoing hyperbolic excess velocity vec-
tors, along with the full revolution return vectors, should
be expressed in the P, T, 4 coordinate frame so that the
taking of scalar products can be used to obtain angles
between the vectors. The calculation of the desired angles
will not be shown here, however, since Menning2 gives an
adequate presentation of the necéssary calculations.

There are a few important angles and points which are
common to turn angle selection for a single full revolution
return trajectory, for two or more full revolution return
trajectories, and for a half revolution return trajectory
connected with full revolution return trajectories. These

are represented in Figure 3-2 by the points labeled CI and
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a. single FR turn angle

b. two or more FR turn angles

HR below
T >TO
r f®*ImNr  \ 07T out
PO
in LAST
FIRST HR above ENCOUNTER
ENCOUNTER

HR below

¢c. HR turn angles

Figure 3-2. Turn Angle selection
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CO and by the turn angles labeled TI and TO. These are
respectively the points on the full revolution return locus
which reruire the minimum turns from and to the inbound and
outbound hyperbolic velocity vectors and the turns associ-
ated with these points on the full revolution return locus.
The inbound and outbound velocities in this case are, of
course, the hyperbolic excess velocity vectors which are
associated with the interplanetary trajectory legs immedi-
ately before and after the series of full revolltion return

trajectories.

3.2.2.1 Turn Angle Selection for One Full Revolution Return

The logic for the selection of the turn angles for the
case of a single full revolution return is relatively
straizhtforward. Referring to Figure 3%-2a and the angles
indicated in that figure, the logic for selecting the single
full revolution return trajectory which minimizes the maxi-
mum turn angle can be summarized by the following statements:

1. If TI is greater than Aoto then Cl'lS the
point for the FR and the angles are TI and AOI'
2. 1If TO is greater than AIO’ then CO is the

point for the FR and the angles are A and TU'

10
%, Otherwise, the point for the FR is some point
between C; and C (going the short way around) such

that the two turn angles are equal.
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5.2.2.2 lurn Angle Selection for Two or More Full Revolution

Returns

The logic for the selection of the turn ancles for the
case of Cwo or more full revolution returns is more complex
than for the case of one full revolution return. again, the
criterion for the selection is to minimize the maximum turn
angle. In the general case of M full revolution returns,
there will be M+l turn angles; but only three of these angles
will be different. There will be the turn Tl onto the full
revolution return locus, the turn TO off of the full revolu-

tion return locus, and the M-l turns equal to A between

INT
points on the full revolution return locus. In order to
follow the logic, the reader should refer to Figure 3-2b.
The points CI and CO and the corresponding turns TI and TO
should be thought of as initially corresponding to the min-
imum turns onto and off of the full revolution return locqs,
but these points and turns should be thought of as altered
as necessary. Then the logic for the selection of the turn
angles for the case of two or more full revolution returns
can be summarized as follows:
1. 1If TI is greater than AINT and TO is greater
than A

then C+ and CO and the M=2 intermediate

INT?® I
points are the desired points on the full revolution

return locus, and the initial turn angles are the
desired ones.

2. If A is greater than TI and T. is greater

INT O
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than AINT’ then CI should be moved toward GO
(the short way around) until Ty and Appn are
made equal.

3., 1If TI is greater than AINT and AINT is
greater than TO, then CO should be moved toward

Cr (the short way around) until T, and A

0 INT 3T€

made equal.

' 4, 1If AINT is greater than TI and is also
greater than TO, then CI and CO should be moved
toward each other until the three angles (TI’ A

INT?®
and TO) are all made equal.

The calculations used to carry out this logic and to
calculate the desired angles are given by Menning2 and are

contained in the computer program of Appendix A.

3.% Half Revolution Return Trajectories

3,1 General Characteristics of Half Revolution Return

Trajectories

Half revolution return trajectories are, in a way, a
special case of a full revolution return trajectory. A

half revolution return will frequently be abbreviated as
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"HR". The hyperbolic excess velocity vector necessary to
produce a halfl revolution return trajectory is a special
case of the locus of hyperbolic excess velocity vectors
which produce a full revolution return trajectory. This
special case is determined from the more general locus by
the restriction that the R component of the hyperbolic
excess velocity must be eaual to zero. Given that the hyper-
bolic excess speed is VH’ the points for the velocity giving
4 hall revolution return trajectory are shown by the two
points labeled "HR" in Figure %-1. Cn a half revolution
return, the eccentricity of the vehicle's orbit around the
Sun, as well as the semimajor axis of its orbit, must match
those of the planet's orbit.

As in the case of a full revolution return trajectory,
only one of the encounter dates is an independent variable.
The initial date of encounter on a half revolution return
decides the second date; however, the second date is not
exactly one half planetary period later because of. the
eccentricity of the planet's and hence of the vehicle's
orbit. The second encounter of the vehicle with the planet
occurs after a heliocentric transfer angle of 180° which
may be after a length of time which is slightly greater or
slightly less than one half of a planetary period. Series
expressions for the true anomoly before and after a half
revolution return and a series of full revolution returns,

are derived in Appendix B as a power series in the eccentri-
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city e. That a series of full revolution returns is connect-
ed with a nhalf revolution return does not alter the fact that
for such a series of several FR and one HRk, only one of the
encounter dates i1s an independent variablej; all of the
reraining encounter dates can be calculated from one of the
encounter Jdates, the first encounter dste, for example.
another quirk introduced with a half revolution return
is tnat the speed relative to the planet at the encounter
sIter a half resvolution return is not the same as the speed
at the encounter just before the half revolutiocn return.
This too is due to the eccentricity ol the planet's and of
the vehicle's orbit around the Sun. In each case, for a
given half revclution return, the speeds before and after
are proportional to the G component of the planet's helio-
centric velocity at each encounter point. A consequence of
this difiference in hyperbolic excess speed is that for a
periodic orbit, the arrival speed at a planet, after a
transfer from another planet but before a series of one HR

and several FR, must be different from the departure speed
from that planet.

%2.,%3,2 Turn Angle Selection for a Half Revolution Return and

Several Full Revolution Returns

The problem of turn angle selection for one half revo-
lution return and a series of several full revolution

returns is considerably more difficult than the problem for
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just a series of full revolution returns. First of all,

one should note that in this case the criterion of minimig-
ing the maximum turn angle is not exactly eguivalent to max-
imizing thre minimum radius of closest approach, because the
eccentricity or the orbits causes the speeds to be different
before and after the half revolution return. The logic for
carrying out either one of these criteria would be consid-
erably more difficult than for the equivalent problem of a
series of full revolution returns because of the number of
choices involved.

There are quite a few choices as to how one might
arrange a single half revoluﬁion return with a series of
full revolution returns. First of all, the half revolution
return with a given initiai hyperbolic excess speed can be
accomplished in two ways; +the half revolution return tra-
Jjectory can take place either above or below the plane of
the encountered planet's orbit. These two choices are |
indicated by the two points labeled "HR" in Figure 3-lc
and by the two pairs of points labeled respectively "HR above"
and "HR below" in the two parts of Figure 3-2c. Secondly,
one must decide how many of the full revolution returns are
to be placed on each side of the half revolution return; one
must decide how many FR should go before the HR and how many
FR shouvuld go after the HR. Finally, one must decide how to
pick the turn angles once the above two choices have been

made; the positions of the full revolution return velocity
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vechors on the full revoiution return locus must be decided.

Because of the complexity of the logic reauired to make
111 of these decisions in a truly optimum way, it was decided
not to have the computer make all of them automatically.
The decisions as to whether the half revolution return tra-
jectory roes above or below the planet's orbit and as to how
many full revolution returns go on each side of the half
revclution return, are included by the investigator in the
data for the computer progrsm. Then, if the vehicle hits
the planet in one or two cases, the investigator can run the
problem again after having made a Iew re:sonable changes in
this information.

Once the decisions have been made as to how many FR
are to cccur on each side of the HR and whether the half
revolution return trajectory will be above or below The
planet's orbift, the minimization of the maximum turn angle
is relatively straichtforward. This logic is quite similér
to that for a series of full revolution returns alone. The
scheme of the problem is illustrated in the two sketches in
Figure 3--<c. The two sketches correspond to vhe zituations
before =nd after the half revolution return. In Figure
3-s¢, if the half revolution return is to be above the plane
of the planet's orbit, then the points of the 1ull revolu-
tion return locus which produce this desirec half revolution
return are labeled "HR above." Correspondingly, the points

labeled "HR below" are connected with a half revolution
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return which lies under the plane of the planet's orbit.

In either case (either before or after the half revo-
lution return), if there is to be no full revolution return
before (or after) the half revolution return, the desired
turn angle is simply the turn angle from the incoming veloc-
ity vector (to the outgoing velocity vector) to (Lrom, the
velocity vector which produces the desired half revolution
return.

For the situation where there are to be one or more full
revolution returns before (or after) the half revolution
return, the problem of minimizing the maximum turn angle has
similarities to the same problem for a series of two or more
full revolution return trajectories. The logic will be
exp;lained here for one or more FR occuring before the HR,
+nd the first sketch in Figure 3-2¢ will be referred to. The
logic for the FR occuring after the HR is exactly analogous
and can be demonstrated on the second sketch; because thev
logic is escentially the same, it will not be moentioned
explicitly. As in the case of two or more full revolution
returns, consider the minimum turn from the inbound velocity
vector onto the locus which will produce: a full revolution
return and consider that point to be called CI. The turn in
is to be called TI. Then, if there are M full revolution
returns before the half revolution return, there will be M
equal turn angles labeled AINT to get to the velocity vector

which produces a half revolution return. As before, consider
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TI to be initially the minimum turn onto the full revolution
return locus: but consider the possibility of moving CI S0
as Lo increase Tl and reduce_AINT.

fne actusal logic really only involves one test sna one

{I
AINT’ then one already has the desired turn angles. Other-

pessible adjustment. 1f one initially hbas greater than

wise, one should move CI sc as to increase TI and decrease

AINT 50 as Lo make eauazl these two angles. 'The same simple
1

loric works for the FR s and depuarting velocity vector alter

the HR.

5.4 Symmetric Return Trajectories

Symmetric return trajectories return to the planet of
departure after varyineg periods of time. bLecause the times
vary and the transfer angles vary and are, in general, not
some multiple of 1800, the two points of encounter and the
sun are not cdlinear. Hence, the plane of the vehicle's
orbit must coincide with the plane of the planet's orbit.
Different symbols are used in this thesis to stand for sym-
metric return trajectories, because there are different
types of symmetric return trajectories; but all of them end
with the two letters "SR". The symmetric return trajecto-
ries differ considerably from the full revelution return or
the half revolution return in that the length of the sym-
metric return is varied continuously in order to produce a
continucus variation in the speed of the vehicle relative to

the planet. For symmetric returns, the encounter dates at
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the ends of the trajectory are independent variables and

must be chosen separately.

5.4.1 I'he Linear Case

One way to search for direct return trajectories which
g0 Qround the sun the ssame number of times as the planet of
launch and arrival is to congider equations of motion line-
arized about a point in circular orbit around the Sun.

Hollister12

uses these linearized equations as an initial
step in mission planning; he presents their derivation in
Aprpendix A of his doctoral thesis. Letting x be measured in
the R direction from the planet and y be measured in the G
direction from the planet--both in units of the radius of

the planet's orbit (a.u. for the Earth)--one obtains the
differential equations of motion in the plane of the planet's

orbit which Hollisteri® presented as Equation (4.9),

[

Upy + 12n2x

X =
be -e (5_2)
y = —lux
Hollister gives the solution of these equations as,
X = st + rVy
(3-3)
y = —rVX + qu
for zero initial conditions on x and y where,
q = q<t> = 4 8in 27;13 - 61113
r=1(t) = 2 = 2cos 24t (3=4)
s = 8(t) = sin 24t

and where VX and Vy are the components of the hyperbolic




excess speed meavured in units of the planet's speed
around the Sun (Earth Mean Orbital Speed units (EMUS) in the
case of btarth). Time t is measured in units of the planet's
period (years).

Then, in order to find a direct return trajectory in the
X~G plane, one desires a Vx’ a Vy’ and a time t such that x
and y are simultaneously zero. Hollister5 in his Appendix D

shows that this requirement is,

—vz=—§=9 (3-5)
y T

which reduces to,

4(1 - cos 2nt) = 3t sin 2gt (3-6)
This eyuation has solutions whenever t is an integer. These
solutions with t an integer correspond to full revolution
return trajectories which lie in the plane of the planet's
orbit. Half revolution return trajectories do not show up
as soluticns of this equation, because half revolution |
returns occur only perpendicular cto the plane of the planet's
orbit in the neglected 2 direction of this simple model.
The remaining solutions at non-integer times correspond to
the linear soiutions for symmetric return trajectories. The
first ten of these non-integer solutions are presented in
lable 5-1. 1In this table, the departure angle is measured
from the G axis toward the R axis; the departure angle ic
equal to the inverse tangent of VX/Vy° Both solutions from

the inverse tangent are presented. After the given time in
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planetry periods, 2 vehicle would return with an arrival
an=le vhich is the neeative of the departure angle. Chis
reversul of bthe R component of velocity (Vx) between

departure s#nJ arrival 1s another characteristic whizh is a

result of tne gymwetry of svmmetric returns.

Time in Departure angles in degrees
planetary limit of SiSR limit of LiSR
i beriods _ trajectories trajectories
1 1.4067 3. 578 -81.422
2 2.4453 94.960 -85.040
5 3.4612 9%.509 -86,4901
4 4,4699 92.718 -87.282
5 54754 92.219 -87.781
6 6,4792 91.876 -88.124
" 74820 91.625 -88.%575
8 8.4841 91.433 -88.567
S 5.4858 91.282 -88.718
10 10.4871 91.159 -88.841

‘Table 3-1. DNumber of planetary periods and departure angles
for symmefric returns obtained from the simple model of
Hellister—.

3.4,2 Symretric rReturns at a Planet in Circular Orbit

Around the Sun

The values for the times and the angles obtained from
the snalysis of the linear case give the results for a more
accurate analysis in the limit as the speed relative to the

planet approaches zero. In the more general case, there will
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be symmetric returns which last longer and symmetric returns
which last a shorter time than the time indicated by the
linear analysis.

Now, we come to the point of explaining the symbols
which this thesis uses in some places to indicate the dif-
ferent types of symmetric return trajectories. The first
character in each symbol.is either an 5 or an L standing
respectively for symnetric returns which are shorter than or
longer than the one indicated by the linear analysis. The
second character in each symbol is a positive integer which
indicates the number of revolutions of the Sun completed by
the vehicle and the planet during the symmetric return. The
last two symbols in eacn case are "SR" to indicate that a
symmetric return is being indicated.

For the problem of a planet in circular orbit around
the Sun, the length of time which the symmetric return tra-
jectory 1s to last determines the speed relative to the |
planet and the angles of departure snd arrival. Figures 3-3
through 3-7 sive plots of departure and arrival speed and
departure angle relative to a planet in circular orbit
around the Sun with a semimajor axis of one astronsmical
unit. The lengths of time for the symmetric returns are
given in days as well as in planetary periods or years. The
speed relative to the planet is given in Earth Mean Crbital
Speed units. The plots alsoc give the departure angle for

the hyperbolic excess speed vector. The angle is measured
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positive Ircm ULhe G axis toward the o axis. The arrival
angle for the velocity vector relative to the planet at the
end of the symmetric return trajectory is bthe negative of
the de.arture =sngzle. The plots were made using tne patched
conic a-proximations mentioned in Chapter 1 of this thesis.
Jhe plots are essentially made for symmetric returns at
Barth; but they can be easily scaled for symmetric returns
at any other planet in almost circular orbit by going from
vears to planetary periods for the time measurement, and by
going fror BMOS to units of the planet's average orbital
speed.

The longer symmetric returns here can be expected to
be of less use than the shorter ones for the same reason
that direct returns which do not go around the sun the same
number of times as the planet can be expected to be of limi-
ted usefulness. Both types of returns spend a great dezal of

time away from the BEarth.

3.,4,%5 Belection of the Sewimajor Axis for a Symmetric

Keturn Trajectory

The computer program must compute the speeds relative
to a planet in an elliptic.orbit for a vehicle on a sym-
metric return from and to the planet. For inputs, the com-
puter needs the dates specifying the times of encounter
immediately before and immediately after the symmetric
return trajectory. These times of encounter specify the

positions of encounter and the length of time for the sym-
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metric return trajectorv. The compuber must then solve
Lombert's problem for the resulting space triangle in ovder
to 1ind the trajectory followed by the vehicle. Ihis pcint
ir the Jiscusslion brings us to an important characteristic
ol Lambert's protlemn.

If the vehicle is to make more thsn one iull revolu-
tion arcund the Sun, then the solution to the sprce triangle
prebl em is not unigue. If the space triangle protlemr is to
be solved with bLhe number of Ifull revolutions of the &un
speciried (greater than or equal to one), then the specifi-
cation of the time c¢f flight will, in general, result in the
possibllity of two ditfferent values for the semimajor axis
of the transfer ellipse. There will be two possible solu-
tions. Une of these sclutions will correspsnd to The tra-
jectory cof the planet, and the other one will correspond to
the btrsajectory of the vehicle. Menning2 discusses how the

lowic of finding the vehicle trajecbtory is carried out.

3,5 Series of Direct Return lrajectories

Now consider the problem of how to combine series of
types of direct recurn trajectories. C(ne would like to
know what lengths of time one can stay in the vicinity of a
planet by use of a series of free-fall flybys before embark-
ing on a trajectory leg which would take one to another

planet. A 1list of wait times in the vicinity of one planet

l..J.

which are available for use as part of a periodic orbit is a

desirable collection of information. One would also like to
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know how to achieve these different wait times and what
restrictions, if any, are to be placed upon the use of the
iifferent schemes.

One rust start with a logical plan of attack to achieve
different walting times. The author bepan by essentially
obtaining all of the difierent possible combinations of
direct return trajectories. Appendix C calculates the num-
ber of combinations which exist in general.

First, the number of types taken one at a time were
obtained, then the number of combinations taken two at a
time were determined, and tnhe different combinations contin-
ued tc be taken until all of the different combinations
taken six at a time were obtained. The number of different
types of direct return trajectories was restricted to the
HR, PrR, S13R, and L1SR types. The other types of symmetric
return trajectories were not considered in the initial
determination of all of the possible combinations because of
the additional complexity involved and because one LZ2SR, for
example, takes very close to the same time to complete as
does one FR and one L1SR; the L2SR could be considered a mod-
ification of (FR)(L1SK).

Once all of the different combinatisns of HRs FR, S18R,
and L1SRKR were determined, one could then begin eliminating
and adding combinations. First of all, one could eliminatte
all of the combinations which involve two or more half revo-

lutior re.urns, because these combinations cculd more easilly
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be replaced by a cowbination in which each pair of half rev-
olution returns is replaced by one full revolution roeturn.
vne 1ull reveclution r—turn takes the same length of time as
two halfl rovolution returns snd can, in general, be accom-
Plished nore easily in terms of cne loss encounter und a
oreater minimum passing distance. Then those combinations
are uadded which can be created b, substituting, for instance,
one 3%3R for (2fr)(S1SR). Thirdly, all of those combinations
are eliminated which reguire unreascnable turn angles such
as those greabier than 900. Fer instance, a combination such
as (251oR) would be eliminated, because one could not expect
the vehicle to make the turn between the two symmetric re-
turns without hitting the planet.

Finally, lengths of time are asscciated with each
dirvect return trajectory. The lengths of time taken for the
gymuetric returns are arbibtrarily taken to be those at which
the sueed relative to the planet at encounter is 0.3 403
(or plaret<ry orbital speed units in the case of a planet
other than marth). Then all of the different remaining
combinations are placed in order of increasing time up to
sore arbibrary limit such as three average synodic periods
of ©arth and Mars. These results are pragsented in the table
of Appendix D.

Appendix D also associates these different combinations
and walt times with time differences between the ends of

such a combination of direct returns and the ends of an
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interval. This interval is made up of an integer number of
synodic periods, and the series of direct returns is centered
in it. The time differences and the intervals may be seen
easily in Figure 3-8. These time differences are useful in
agssociating interplanetary trajectories with series of direct
returns in order to develop periodic orbit schemes. They
give dates relative to the date of planetary alignment.
Appendix D finally gives a letter code of restrictions on

the incoming and outgoing velocity vectors at the end of

the interval formed by the series of direct return

trajectories.

interval consisting of
an integer number of
synodic periods

interval consisting
of a series of
direct returns

C

ime differences
of interest

g m e = >~
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-lin ewe gD ewo

\q IS .
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Figure 3-8. Times associated with series of direct returns.

3,6 Direct Return Trajectories Which Travepse the Sun a

Different Number of Tises ¥han the Planet

Direct return trajectories which go-around the Sun a




64

different number of times than does the planet which the
vehicle encounters immediately before and after the direct
return are an unexplored area. One would expect to divide
these direct returns into categories analogous to the cate-
gories of the direct returné mentioned earlier. One would,
in general, expect direct return trajectories which traverse
the Sun (1.) an integer number of times, (2.) an integer
number of times plus exactly 1800, and (3.) noninteger num-
bers of times. These direct returns would differ, however,
from those coveréd more thofoughly in that the hyperbolic
excess speed at encounter associated with them may not
approach zero.

A much more complete coverage of the area of direct
return trajectories should cover these other types of direct
returns and should include them in the number of combinations

of direct returns considered.
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CHAPTER 4

POSSIBLE APPROACHES TO OBTAIN PERIODIC ORBITS

CONNECTING EARTH ANB MARS

The problem remaining, to find periodic orbits con-
nécting Earth and Mars, consists of finding twe or more
intérplanetary trajectories which can be patched together with a
geries of direct return arbits where needed threugh flyby
maneuvers at the encountered planets to form a periodic
orbit. Naturally, the vehicle on the periodic orbit must
miss the encountered planet during the flyby maneuver. One
must also work within the constraints of the basic periodic-
ity of the solar system as mentioned in Chapter 1 and
discussed by Hollisterl. Finally, one would like to findA
periodic orbits connecting Earth and Mars which involve
reasonably small velocities relative to Earth and Mars,
which have reasonably short Barth-Mars and Mars-Earth inter-
planetary transfers, and which make the round trip between
Barth and Mars reasoﬁébly frequently.

For each prospective periodic orbit tried, an attempt
was made initially for the circular coplanar case where the

basic repetition time for the periodic orbit is either some

multiple of the synodic period or some multiple of the
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period in which the relative positions of the planets
involved repeat themselves. If the scheme did not work in
the circular coplanar case, it was assumed that it would not
work in the elliptic inclined case with a basic repetition
period of some multiple of 32 years.

In all cases, symmetry was used to improve the chances
for finding a periodic orbit. Symmetry in this case means
primarily the existence of "reciprocal" trajectories as dis-
cussed by Rossq. An interplanetary trajectory or an inter-
planetary round trip trajectory always has a "reciprocal"
trajectory in the case of circular coplanar planetary crbits.
The two reciprocal trajectories have the properties that
the speeds at the encountered planets are the same for the
two trajectories and the dates of the planetary encounters
on one trajectory are the negative of the dates of the
planetary encounters on the other trajectory when the dates
are measured from the time of planetary alignment (conjuné—
tion or opposition). Symmetry means. that if an interplan-
etary trajectory or an interplanetary round trip trajectory
is used in an attempt at a periodic orbit, then the "recip-
rocal' trajectory is also used. Symmetry also means that
if the basic period Sf repetition for a prospective periodic
orbit in the circular coplanar case involves a certain num-
ber of synodic periods, then this prospective periodic
orbit can be arranged within this period so that the dates

of encounter for the periodic orbit are symmetrically
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arranged (positive and negative) about a point in time
within the period. This concept of symmetry may easily be
seen in Figures 4-1, 4-2, and 5-1 through 5-4.

Symmetry improves the chances of finding a periodic
orbit, because it insures that the hyperbolic excess speeds
can be made equal at both ends of a series of direct returns.
This equality is insured by the fact that most of the series
of direct returns used within periodic orbit schemes join
corresponding points on two “reciprocal" trajectories.
Remember that each member of a pair of corresponding points
on two reciprocal interplanetary trajectories has a hyper-
bolic excess speed which is equal to that at the other point.
Bear in mind that reciprocal trajectories exist exactly only
in the circular coplanar case and that the relationships
discussed here hold only approximately for more accurate
solar system models. If the two ends of a given series of
direct returns do not correspond to ends of two reciprocai
trajectories, then one cannot guarentee that the hyperbolic
excess speeds will be the same at each end of the series of
direct returns without putting an additional restriction on
the remaining dates of encounter. Such an additional restric-
tion could very wellﬂresult in making it impossible to match
the hyperbolic excess speeds at each planetary encounter.

In each of the periodic orbits attempted, there was symmetmy
in the sense discussed here.

A1l approaches used in this investigation are included
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in this chapter, but only one of them resulted in a workable
periodic orbit. An additional approach may reasonably be
expected to produce successufl results. The unsuccessful
approaches are included in order to demonstrate What
approaches are possible and what approaches might eventually

be expected to lead to successful results in other problems.

4.1 Approach Involving Direct Return Orbits at Both Earth

and Mars

The scheme used by Hollisterl to obtain his Earth-Venus
periodic orbits and the scheme used here was to make the
interplanetary legs of the proposed periodic orbit fairly
low energy transfers (fairly close to Hohman transfers) and
to connect these interplanetary transfers with suitable series
of direct return orbits at each of the two planets. Although
this method worked for the Earth-Venus case, not much hope
was held for the success of this method in the Earth-Mars
case because of the much lower mass of Mars, 0.108 Earth
mass, relative to the mass of Venus, 0.815 Earth mass. The
lower mass of Mars means that much less velocity change is
available from a flyby maneuver, and it was expected that no
scheme involving direct returns at Mars would work even in the
circular coplanar case. Success was not empected even in the
circular coplanar case, because the Earth-Mars Hohman velocity
relative to Mars is 0.09 EMOS and the approximate turn angle
needed to get onto a full revolution return trajectory is

900; at this speed, Mars can supply & turn of only about 80°
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without the vehicle's intersecting the surface of the planet.

Use is made of the symmetry properties of trajectories;
for this type of periodic orbit in the circular coplanar case,
the Farth-Mars trajectory is the reciprocal of the Mars-Earth
trajectory.

In attempting to obtain a periodic orbit of this type,
one.'can calculate the dates for the circular coplanar case
without the help of an electronic computer. One simply
obtains approximate dates for a very low energy interplan-
etary trajectory between the two pllanets of interest (and
at the same time the dates of the symmetric interplanetary
trajectory)--both relative to a date of opposition. One
then determines a series of direct returns at each planet
which can patch together the interplanetary trajectories and
give dates relative to opposition which are close to those
determined for the low energy trajectory.

In the case of the Earth-Mars periodic orbit, two tra-
jectories were found which worked, surprisingly, in the cir-
cular coplanar case. The reason that a turn onte the full
revolution return locus at Mars is possible in this case is
that, in going from the Hohmen trajectory to the actual inter-
planetary trajectory, the incresase in speed at Mars was sm&ll
while the decrease in the required turn angle was more substantial.
The two speeds at Mars were 0.11 and 0.15 EMOS while the two
minimum turn angles onto the full revolution return locus were
about 65° and 40° respectiv

eriods), made one round trip between

T

cycle of 12.8 years (6 synodic
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Earth and Mars in this period of time, and involved 4 full
revolution returns at Mars (lasting a total of 7.5 years).
The large number of full revolution returns (and long waiting
time) at Mars was allowed deliberately in order to permit. the
velocity vector relative to Mars to be turned as needed
dufing a large number (5) of flybys. In the circular copla-
nar case, one of the periodic orbits involved 4 full revolu-
tion returns at Earth and missed Mars by 0.03 planetary
radii; the other periodic orbit involved 2 full revolution
returns and one short symmetric return at Earth and missed
Mars by 0.007 planetary radii. In both cases the miss dis-
tances at Earth were more substantial.

when convergence was obtained for the elliptic inclined
case with a repeating period of 64 years (30 synodic periods),
however, both trajectories hit Mars. The prime reason for
the increased difficulty with the elliptic inclined case is
that the resulting inclination of the transfer trajectoriés
between Farth and Mars results in a large out-of-plane veloc-
ity component relative to the encountered planets and hence
much higher speeds relative to the encountered planets. The
resulting higher speeds relative to Mars mean that the flyby
maneuvers are simply\no longer possible.

It is not expected that any periodic orbits of this

type connecting Barth and Mars exist.
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An Attempt to Obtain Directly an Barth-Venus-Mars

Periodic Orbit

An attempt was made to pubt together Hollister‘sl

peri-
odic Orbit I connecting Earth and Venus and an Earth-Venus-
Mars-Venus-Earth continuous flyby trajectory to form a
periodic orbit connecting Earth, Mars, and Venus.
Hollister'sl periodic OUrbit I has a basic repeating period
in the circular coplanar case of 3.2 years, one year of
which is spent in the vicinity of Earth. Hence, the time
between successive Earth encounters on each side of the trip
to Venus is 2.2 years in the circular coplanar case.

5

VanderVeen” found several Earth-Venus-Mars-Venus-Earth flyby
trajectories including some which are basically symmetric
and last about two years. They are symmetric basically in
the fact that two of thelinterplanetary trajectories are
close to being the reciprocal trajectories to the other two.
VanderVeen calls this type of trajectory a 5/5 type. Appar-
ently, the reason for the existence of this type of low
energy flyby trajectory has to do with the fact that a Mars-
Venus Hohman transfer takes 216 days while Venus' period is
225 days. Note also that the relative positions of Earth,
Venus, and Mars repeét every 6.4 years in the circular
coplanar case. Also, once in every 6.4 year period, an
opposition of Mars corresponds roughly in time to a superior

conjunction of Venus. It is approximately at this time that

VanderVeen's multiple flyby trajectory encounters Mars.
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Therefore, it was thought to be reasonable to attempt to
obtain an harth-Earth-Venus-Venus-Venus-Earth-fgarth-Venus-
Mars-Venus-Earth (repeat) periodic orbit. In the circular
coplanar case, it would repeat every 6.4 years. However,
it was thought that it could be determined directly in the
elliptic inclined case simply by putting down Hollister's
urbit I for 32 years and putting in an encounter at Mars
instead of an encounter at Venus at the appropriate 5 times
in 32 years. The basic arrangement of trajectories and
encounters attempted is that of Figure 4-1. This approach
was tried with the computer program, but convergence was
not achieved.

Several other ideas similar in nature to this approach
were tried, but without success. Instead of trying to send
the vehicle to Mars 5 times in 32 years, an attempt was made
on succes=zive computer runs to send the vehicte to Mars 1, 2,
%, 4, and finally © times in %2 years. With successive sﬁb—
mittals of attempts to the coxputer program, convergence was
eventually obtained to send the vehicle to Mars % times in
52 years. Convergence could not be obtained to send the
vehicle to Mars 4 or 5 times in 32 years. Unfortunately,
even with the converged solution to send the vehicle to Mars
% times in 32 years, the trajectory frequently intersected
Venus in preparation to go to Mars or in coming back from
Mars.

In addition, several attempts were made in the circular
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coplanar case with a basic repeating cycle of 6.4 years.
These sttempts also were without success. Attempts were made
in the circular coplanar case based on Hollister's periodic
Crbits I, 11, and 11l; none of the attempts converged.

The solar system model used was Model I1.A.2. An attempt

was alsc made with this solar system model to patch together
into a periodic orbit a trajectory similar to that of
VanderVeen with a wait at Barth of about 4.4 years ((3FR)
(515R), (BR)(4FR), or something similar). The arrangement of
this last type of attempt is shown in Figure 4-2. Conver-

gence also faliled here.

4,3 Reduction of the Earth-Venus-Mars Periodic Urbit

Froblem to a Two-Dimensional Problem

In order to obtain convergence for the problem of an
karth-Venus-Mars periodic orbit based on the trajectories of
VanderVeen5 and Hollisterl as shown in Figure 4-1, a much.
better initial guess for the encounter dates must be obtained.

In order to do this, the problem is first reduced to a
two-dimensional problem which is solved to give a
better initial guess. The first step in doing this is the
selecticn of a solar system model which is circular, coplanar,
exactly periodic and has an opposition of Mars which corre-
sponds exactly to a superior conjunction of Venus; in other
words, one 1is to use solar system Model I.A.1. With this
model, the basic repeating peiriod for the relative positions

of the three planets, Earth, Mars, and Venus, is 6.4 years.
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If the date of opposition of Mars and superior conjunction
of Venus is placed in the center of this 6.4 year period as
in Figure 1-1, then the remaining times of conjunction of
Venus and opposition of Mars are arranged in a symmetrical
pattern around this date. One can then argue by symmetry
that the date of the encounter at Mars must correspond with
the date of opposition and superior conjunction and that
any series of direct returns at Venus must be centered
around the date (3.2 years from the above mentioned one) of
both Marsg and Venus' being exactly on the opposite side of
_the Sun from the BEarth. Then, for a periodic orbit of the
type considered here and in the previous section and shown
in Figure 4-1, there remain four independent dates of encoun-
ter to be chosen--two at Venus and two at Earth. However,
from the condition of symmetry, these dates should be sym-
metrically arranged about the date of opposition and supe«
rior conjunction. Hence, there should remain only two inde-
pendent dates--one at Venus and one at LEarth--left to solve
the problem.

For the case mentioned at the end of Section 4.2 and
shown in Figdre 4-2, where the periodic orbit only goes to
Venus on the way to and from Mars, there is only one inde-
pendent variable to determine. This variable is the date
relative to the time of opposition and superior conjunction
which describes the two dates at Venus.

in order to solve the two-dimensional proble
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were made. The axes of these plots are the date at Venus
and the date at Earth, each of which is measured relative to
the date of opposition and superior conjunction, which cor-
responds with the date of encounter with Mars. A point on
the plot corresponds to two. symmetrically arranged dates of-
encounter at Earth and two symmetrically arranged dates of
encounter at Venus; the date of encounter at Mars is always
assumned to correspond to the date of opposition and superior
conjunction. The plots give locii of pairs of dates such
that the difference in hyperbolic excess speed before and
~after the planetary enccunters at Earth and Venus are zero.
Each locus appears as a line on the blot, and a possible
periodic orbit solution is indicated by the intersection of
two locii.

Figure 4-3 shows the region of possible interest for
these plots as a large triangular region. The borders of
the region are very strict constraints on when the encounters
can occur. The boundary on’the‘left is determined by the
fact that a vehicle going from Mars to Venus cannot get to
Venus before it has been to Mars. The diagonal boundary is
decided by the fact that trajectories which get to Earth
before they get to Venus are not being considered here;
hence, the date at Earth must always be a larger number than
the date at Venus. The upper boundary on the region is
determined by the length of time taken up by direct returns

at Venus and at Earth and by the length of the 6.4 year
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interval. 1In fact, a formula for the position of the upper
boundary can bte written in the form,

D = 1169 days - % TQ-w Te (4-1)
where TQ is the length of time spent on direct returns in the
vicinity of Venus and where ITg is the length of time spent
on direct returns in the vicinity of Earth on each of the two
occasions which the vehicle spends in the vicinity of Earth.
The smaller region inside of the triangle of Figure 4-% is
the region to which the plotting of locii was arbitrarily

limited and is the region of Figures 4-4 and 4-5.
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Figure 4-3. Regions of possible trajectories and investi-
gation for periodic orbit attempts involving symmetric
Earth-Venus-Mars-Venus-Earth flyby trajectories.

Figure 4-4 shows the locus of points such that the
hyperbolic excess speed difference at Venus is equal to zero.

This particular locus is needed in all cases. It will remain
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the same regardless of how much time the vehicle spends in
the vicinity of Earth and in the vicinity of Venus. It is
the only locus of interest if the vehicle does not go to
Venus except in going to and from Mars as in Figure 4-2.

Une more locus is needed if the vehicle is to go to Venus

a second time as in Figure 4-1 in order to obtain a solution
at an intersection. Note that Figure 4-4 says nothing sbout
whether the required turns are possible at Earth, at Venus,
or at Mars. Actually, it is impossible to say from the infor-
mation on Figure 4-4 whether the turns are possible at Earth
-and the second time at Venus, unless.one épecifies what
direct returns are to be used at Earth and at Venus. One
could, however, tell whether the required turns.were possible
at Mars and at Venus on the way to and from Mars; but this
information has not been determined for this plot. Onre can
comment from experience, however, that the turns are usually
impossible, except for small regions around dates at Earth

of 30C and 445 days and dates at Venus not too far separated
from about 220 days.

Figure 4-5 shows both the locus for equal4hyperbolic
excess speedé at Venus and for equal hyperbolic excess speeds
at Earth--for two different schemes of direct returns at
Venus. In both schemes, the two series of direct returns
at Earth in each 6.4 years each consists of one full revo-

lution return. The locus for no difference in hyperbolic

).

excess speed at Venus is shown as a solid line (
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The locus for no difference in hyperbolic excesa speed at
Barth for the scheme which involwes two full revolution
returns at Venus is whown as a dotted line (¢==e=-=), The
locus for equal hyperbolic excess speeds at Earth for the
scheme which involves three full revolution returns at Venusv
is shown as a line which alternates dots and dashes (-—-—-3.
The intersections of the dotted lines with the solid line
are solutions which are to be investigated for the possible
existence of periodic orbits. The intersections are solutions;
but they must be investigated to see that they will work to
~the extent of missing the encountered plahets and to the
extent that they will converge for more accurate models of
the solar system than the one used here, solar system Madel
I.A.1.

Intersections A and B in Figure 4-5 indicate solutions
to the scheme which involves one FR at each Earth visit and
2FR at the visit to Venus which occurs half way through the
6.4 year cycle of the scheme. The solution corresponding to
intersection A results in the vehicle's intersecting the
surface of Venus both immediately before and imﬁediately
after the encounter with Mars. The solution corresponding
to intersection B results in the vehicle's intersecting the
surface of Venus at each encounter associated with the two
full revolution returns &% that planet. |

Inéersecﬁions C and D in Figure 4-5 indicate soclutions

to the scheme which involves one PR at each Barth visit and
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3FR at the visit to Venus which occurs half way through the
6.4 year cycle of the scheme. These two intersections are
very close together. With a more accurate circular coplanar
model for the solar system such as Model I.A.2 or I.B in
which the opposition of Mars does not exactly correspond to
the time of the superior conjunction of Venus, one could
expect a number of different possible solutions, perhaps
none through four in number. Apparently, the number of solu-
tions in this case is zero, because the circular coplanar
computer solution always failed, regardless of the starting
~point for the dates, which were always in the vicinity of
the dates indicated by the intersections C and D.

This behavior for solutions obtained in this manner is
fairly typical. Many other schemes of this type were tried,
and none of them worked ; some of them did not even supply
intersections of locii. All of the schemes wkre of the type
Earth—Venus—Mars-Venus—Earth—(Egrth)—Venus~(Venus)-...—Venus-
(Eafth)—Earth—repeat. Fourteen different
schemes were tried. Nine involved a wait at Earth each time
of one full revolution return, four involved a Qait at Earth
of one symmeﬁric return, and one involved two full revolution
returns at Earth. They all involved different waits at Venus.
Whenever a symmetric return was involved; for the purposes
of obtaining a plot; it was assumed to be a constamt 1.4
planetary periods. One could then make runs with S1SR and

L1SR and attempt to obtain convergence. This approach gave
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line intersections in eleven of the fourteen cases. 4 great

many of the subsequent computer runs did not converge to

o

solution, and all of the solutions which did converge
resulted in the trajectory's intersecting the surfacé of one
or more planets.

If the vehicle is not to go to Venus a gsecond time and
the time other than the Earth-Venus-Mars-Venus-Earth trajec-
tory is to be spent only in direct returns at Earth, then only
the locus of Figure 4-4 is of interest. In this case, one
selects different combinations of flybys from Appendix D and
.reéds the fifth (or next to last) column in the main table
of Appendix D-in order to obtain the "date at Earth" which
is to decide the ordinate on Figure 4-4. From Figure 4-4,
then read off the date at Venus (relative to the date of
opposition). Approximate dates for a circular coplanar
computer attempt are obtained in this manner. There were
thirteen such attempts possible. Not all were attempted on
the computer, but a sufficient number were attempted to
determine that the others would not work. A few did not
converge, but most hit one or more planets. Oﬁly one scheme
seemed to beAa possibility. It involved a scheme which one
can symbolically represent as (FR)(HR)(2FR)(S18R). It is
this scheme which is shown in Figure 4-2. With this arrange-
ment, the vehicle only grazes Earth on the side of the‘half
revolution return associated with the single full revolution

return. Unfortunately, when an eccentric inclined computer
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run was attempted, the problem never converged even with the
smallest values for the eccentricities and inclinations used
in the computer program; apparently, a solution does not
exist with this schene.

The fact that no periodic orbits or long series of fly-
bys were found with the schemes of this section does not
prove that there are no working schemes of these types; but

the existence of working schemes of this type seems unlikely.

4.4 The Possibility of Obtaining a Mars-Venus Periodic Orbit

¥hich Visits Earth Occasionally

Because a Mars~Venus Hohman transfer takes about 216
days while thé period of Venus is 225 days, a fairly similar
number, it was thought possible to more easily obtain a Mars-
Venus periodic orbit than to obtain a Mars-Earth periodic
orbit. If such a Mars-Venus perioéic orbit could be found;
one could then examine it to see when a vehicle following it
would be brought fairly close to Earth; when the vehicle was
in the vicinity of Earth, an attempt could instead be made
to have the vehicie encounter Earth and perform a flyby
maneuver. '

The approach to obtaining such a periodic orbit was to
have the trajectory go from Venus to Mars to Venus in a low
energy fashion (taking around 400 or 450 days for the round
trip and meking about one revolution of the Sun) while Venus

makes about two revolutions of the Sun. Then find appropriate
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direct return trajectories in the vicinity of Venus until
the next opportunity for a transfer to Mars presents itself.
The opportunity for the next transfer is indicated by the
fact that the synodic period of Venus relative to Mars is
about %33 days.

Attempts were made to find a periodic orbit connecting
Venus and Mars involving many different schemes of direct
return orbits. In each case, investigation was limited to
the circular coplanar problem. Attempts were made with
repeating periods of up to four Mars-Venus synodic periods.
In all cases, the atﬁempted method either did not converge,
or the trajectory intersécted the surface of Venus. Schenes
involving full revolution returns at Venus did not work,
primarily because the velocity vector for the interplanetary
transfer is primarily in the direction of Venus' motion
around the Sun while the velocity vector relative to Venus
for a full revolution return at Venus is primarily perpendic-
ular to the direction of Venus"motion. Venus could not
supply the necessary change in direction of the velocity
vector of a vehicle following the proposed periodic orbit
scheme.

More promising direct return orbits appeared to be
those which travel around the Sun a different number of
times than does Venus; the direct return orbits attempted
here are similar to dymmetric return orbits in that they

do not travel around the Sun an integral number of times
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and in that they must lie in the same plane as that of the
departure and arrival planet--Venus in this case. This
investigation attempted to include several different direct
return orbits of this type into several different periodic
orbits connecting Mars and Venus. In each case, the attempt
either failed to converge; or the resulting trajectory inter-
sected the surface of Venus. The failure is partially due
to the lack of knowledge concerning direct returns which
traverse the Sun a different number of times than the planet.
This investigation did not succeed in finding any
periodic orbits connecting Mars and Venus under the circular
coplanar approximation. ILence, the investigation never
proceeded to the point of trying to distort a Mars-Venus
periodic orbit to visit Earth or to the point of going from
the circular coplanar case to the eccentric inclined case.
In conclusion, it can be said that this investigation did
not prove that no periodic orbits of the type considered
connect Mars and Venus; this investigation simply failed to

find any.

4.5 Use of Earth-Mars-Earth Round Trip Trajectories Plus

Suitable Waiting Times in the Vicinity of marth

The scheme which was used in this section finally led
to success in the search for free-~fall periodic orbits
connecting Earth and Mars. It involves a systematic combi-
nation of Earth-Mars-Earth flyby trajectories and .a suitable

series of direct return trajectories in the vicinity of
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Karth.

Ross4 investigated Earth-Mars-Earth (and Earth-Venus-
Earth) flyby trajectories. He created trajectory maps for
the circular coplanar case as well as for the eccentric
inclined case. His results were reprinted in the NASA
handbooksg. The trajectory maps are reprinted here as
Pigures 4-6 through 4-10.

Since the determination of exactly what these trajec-
tory plots mean is not entirely clear, they will be explained
here. The first important fact to note is that all dates
are measured with respect to the date of opposition of Mars.
Figures 4-6 and 4-7 give a broad range of dates and describe
round trips to Mars which are not perturbed by the flyby of
Mars. In other words, the flyby distance at Mars is large.
Bach round trip trajectory is described by two points. Both
of these points are on the smooth lines which are not the
contours of speed at Earth. ZEach point corresponds to a
two-planet interplanetary trajectory--one, from Earth to lMars;
and one, from Mars to Earth. The first point is to be chosen
by looking only at the encounter dates which appear upright
when the chabt ig in its normal position. The first point
corresponding to the EBarth-Mars trajectory can be chosen by
considerations of encounter dates at the planets and/or the
departure speed from Earth. With the choice of the first
point made, the second point is determined uniquely. The

chart must be turned over and attention paid only to those
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encounter dates which then present themselves as upright.
From the date at Mars which has been chosen and which also
describes the date at Mars for the second half of the trip,
one determines the corresponding point on the same or another
of the smooth curves. The procedure is the same for both
of these charts.

Figures 4-8 through 4-10 are very similar to Figures 4-6
and 4~ with only two important differences. Figures 4-8
through 4-10 include a smaller range of dates, but they
include the effect of different passing distances at Mars.
The contours on these charts correspond to the speed at
Barth measured in EMOS and the minimum planetocentric passing
~distance at Mars measured in units of that planet's radius.
The passing distance curves are the ones marked 1, 2, 3, 5,
and 0. Points which describe legs of a round-trip trajec-
tory may now be within large regions of these figures. The
contours of periplanet distance now perform the same function
as the smooth lines in Figures 4-6 and 4-7. One chooses the
first half of an HBarth-Mars round trip by considerations of
dates at the planets, the departure speed from Earth, and/or
the periplanet distance at Mars. One then has a point which
corresponds to some date at Mars and some passing distance
at Mars. One then turns over the chart as before in order to
find the point corresponding to the second half of the round
trip. This second point is determined by the intersection

of the date at Mars with the periplanet distance at Mars.
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As betftore, one only looks at the dates which are upright
when one is selecting a round-trip trajectory. 4as before,
one has two points, each of which corresponds to one lcg of
vhe round-trip trajectory.

A few more comments should be added here about these
charts. Note that the areas of‘Figures 4-8, 4-9, and 4-10
are indicated on Pigures 4-6 and 4-7. A4lso note th=t the
arrival regions of Figures 4-9 and 4-10 are almost the same;
there is a large amount of overlap. The important thing to
see then is that the contours of periplanet distance in
these two figures are continuous from the one chart to the
other. Finally, note that the departure regions for these
two figures are exactly the same.

The existence of "reciprocal' trajectories is also
important for this scheme. The existence of these '"recipro-
cal" trajectories is discussed at the beginning of this
chapter. Briefly, if one thinks of an interplanetary trajec-
tory arranged in some manner in time around an opposition
of the two planets in circular coplanar orbits, then there also
exists a "reciprocal' trajectory, for which the dates ol
encounter are the neratives of the dates of the original tra-
jectory when all dates are measured Ifrom the date of opposi-

tion. The existence of these reciprocal trajectories for
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planets in circular coplanar orbits also implies that ¢ach
round-trip flyby trajectory in such a system also has a
reciprocal round-trip flyby trajectory, since each leg of
the flyby trajectory is a simple interplanetary trajectory.
For each of the Earth-Mars-Earth round-trip trajectories
indicated in the Figures 4-6 through 4-10, there exists a
reciprocal round-trip trajectory for which the dates of
encounter relative to an opposition of Mars are reversed in
sign and for which the speeds at each planet, corresponding
to the same numbers for dates (but having different signs),
are the same.

The basic scheme used in attempting to create
these periodic orbits involves both the Barth-Mars-Barth
round trip trajectory and its reciprocal. That is to
say, if a certain round trip trajectory is used in a
periodic orbit attempt, then the reciprocal trajectory
is also used in the basic circular coplanar scheme. The
only exception to this rule is if a round trip trajec-
tory used in a periodic orbit attempt is its own recipro-
cal; the round trip trajectory will be its own reciprocal if
the date of encounter with Mars corresponds with the date

of opposition and if the dates of Earth encounter are placed

symmetrically about the‘date of martian opposition. In the

general case, the two round trip trajectories are




96

spaced by two different series of direct return trajectories
at Barth so that the length of the basic scheme will be equal
to an integral number of synodic periods and so that the
desired pair of reciprocal round trip trajectories c=an be
properly placed in time with respect to different oppositions
ol Mars. This basic scheme is made clearer in the next
chapter in Figures 5-1 through 5-4.

This method of attempting to obtain an marth-Mars peri-
odic orbit therefore requires the selection of two series
of direct return trajectories at Earth. BEach of these two
series of direct return trajectories is chosen so
that when the series of direct returns is centered in a time
interval which consists of an integral number of synodic
periods, the times of the endsof the series of direct returns
and the times of the oppositions differ by amounts which
correspond to times which are desirable for creating an
Barth-Mars-Earth round trip. Desirable times are indicated
by the departure and arrival dates of Figures 4-8 through
4-10.

Appendix D was created with the problem in mind of
selecting apbropriate combinations of direct returns to use
in periodic orbit attempts. The table of this appendix con-
tains direct returns which last up to a maximum of about

6.4 years. Note that from a given length of time spent in
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the vicinity of Barth on a series of direct returns, one can
easily calculate a corresponding date relative to an opposi-
tion for use in selecting an Earth-Mars-warth round trip
trajectory to be used in a periodic orbit attempt. Let Ts
be the average synodic period of Earth and Mars; let n be
the number of synodic periods between the oppositions around
which the BEarth-Mars-Earth round trip trajectories are to

be centered; let Td be the waiting time in the vicinity of
Barth due to a series of direct return.orbits; then the date
relative to the opposition, T, on which we must leave

Earth on a round trip trajectory, can be expressed simply
as,

T=k(nD, -T (4-2)

4’
The resulting numbers are columns three, four, and five of
the table of Appendix D. The number of columns with this
information is limited to three, because oppositions of inter-
est are arbitrarily limited to those which are three synodic
periods apart or less. In other words, successive round
trip trajectories of interest in a periodic orbit attempt
are not arranged around oppositions which are sepérated
by more than.three synodic periods. This explanation of how
the two series of direct returns are selected is also
presented in Appendix D, but it has been included here for
additional clarity.

The next task in obtaining periodic orbits is to exam-

N

ine carefully Figures 4-8, 4-9, and 410 as well as the
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numbers in Appendix D in order to see how many round trips
can reasonably be patched together with series of direct
return trajectories at parth. The Figures 4-8& through 4-10
give no information about the direction of the hyperbolic
excess velocity vector; hence, because of the lack of infor-
mation, no series of direct return trajectories can be elim-
inated because the direction is wrong, aithough some can be
eliminated because the speed at the end of the round trip
trajectory is too large. A close look at the dates and the
charts will reveal quickly that a very large number of peri-
odic orbits of the class considered seem to be reasonable to
try--a number -on the order of 105. In order to reduce the
number of pericdic orbit candidates which have to be exam-
ined, it seems reasonable to try several of the many possible
candidates and then to make Jjudgements on the candidates
with encounter dates not very far different from the ones of
the scheme tried. 1In this manner a large number of possible
candidates can be eliminated without having to set up and
run every one of them on the computer.

In this manner, eighiteen reasonable candidates
were obtained which worked or almost worked in the circular
coplanar case (solar system Model I.). None of these candi-
dates inﬁolve round trip trajectories from Figure 4-8.
These elghteen reasonable candidates are presented in Appendix
E along with comments as to how well they worked in the
eccentric inclined case (solar system Models II. or IiI.). Ten

of these work in at least one version with the best system model.
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These eighteen circular coplanar possibilities may not be
all of the reasonable circular coplanar possibilities, but
they are all that this investigation has found. In fact,
there may be some other scheme or schemes of the types cone
sidered which lead to a working periodic orbit; but the
author considers this possibility unlikely. Many of the
possibilities listed in Appendix E do not work in the eccen-
tric inclined case (solar system Models II. or III.).
Further discussion of how these periodic orbits work
and what they look like is presented in the following chap-
ter. What happens in the eccentric inclined case is also
discussed. An understanding of how these periodic orbits
work and what they look like is important if one is to con-

sider their application to real missions.

4,6 Periodic Orbits Which Involve Earth, Mars, and Venus

Now that a method has been found to obtain candidates for
Barth-Mars periodic orbits, a better method to obtain candi-
dates for Earth-Mars-Venus periodic orbits is seen clearly.
4s discussed in the first chapter, a continuous set of fly-
bys involving these three planets may not be found; but one
might reasonably expect to find a very long series‘of flybys
involving these three planets.

The key to finding the three planet periodic orbits is
the same as that described in the preceding section of
matching up round trip trajectories. which leave and return

to Earth with suitable series of direct returns at Earth.
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The important things to start with are the information of
Appendix D for different series of direct returns in the
vicinity of Earth and information contained in Earth-Venus-
Mars-Barth, Barth-Mars-Venus-Karth, and Earth-Venus-Mars-
Venus—bkarth round trip trajectory charts. Unfortunately,
these round trip charts involving three planets apparently
do npt exist. Therefore, the investigator must start by
creating a set of these charts for his own use. These
charts should plot the date of departure from Earth versus
the date of arrival back at Earth and contain contours of
hyperbolic excess speed at the different Earth encounters.
The same chart or other charts should include the dates of
encounter at the intervening planets, information about the
direction of the hyperbolic excess velocity vectors at Earth,
and a clear indication of the region where the vehicle will
not hit any of the intermediately encountered planets. The
solar system model which should be used for the creation of
these charts is the circular coplanar, exactly symmetric

and periodic model (solar system Model I.A.l) so that recip-
rocals of most of the trajectories exist; and hence, fewer
charts are réquired; and the charts are an approximation for
a longer period of time. The charts must then be examined
along with the information of Appendix D in order to obtain
candidates for the periodic orbits. Other trajectory charts
and round trip charts which end at Venus could also be

created so that one could also consider periodic orbit
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candidantes which involve direct returns at Venus as well
as at itarth.
This investig:tion has not been carried out, but it is

the next logical step.
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CHAPTER 5

DETAILED DEMONSTRATION OF THE

MORE PROMISING PERIODIC ORBITS

5.1 FEarth-Mars Periodic Orbits in the Circular Coplanar

Case

An understanding of the character of the periodic orbits
found should be important to the reader. This character is
best understood by masking the solar system model as simple
as possible for the initial examination. Understanding the
circular coplanar case should be quite useful to the mastery
of more exact cases, because one knows from experience that
the periodic orbits do not change too much when going from
the less accurate to the more accurate models.

Solar system Model I.B. is to be used here. That is,
the orbits of Karth and Mars are to be circular and coplanar
but are to have accurate values for semimajor axis and period.

The 1abeling system used for periodic orbits is
explained in this paragraph. FEach label for the periodic
orbits considered here begins with the letter M to’indicate
that the vehicle is to go to Mars as well as to Earth. The

second element of each labei is a number such as 4, 5, or 6
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which stands for the number of synodic periods which are
required for the completion of the basic circular coplanar
scheme. Each of the periodic orbits found makes two round
trips to Mars in the time required for the basic circular
coplanar scheme. Next in each label comes a hyphen followed
by another integer. This integer is basically arbitrary
and is used to differentiate among the periodic orbits
within each group. The last element of each label is a
lower case letter which is used to differentiate among the
different variations of each periodic orbit scheme. The
difference among versions of each scheme depends upon which
Earth~-Mars opposition begins the scheme. The number of
different versions will be equal to the number of synodic
periods which are required for the completion of the basic
circular coplanar scheme. Further discussion of this fact
can be found in Section 5.%. However, the difference among
the variations is not significant in the circular coplanar
case; and hence, the lower case letter at the end of the
label is dropped when referring to the circular coplanar
case or to the basic scheme in general

Only the more promising Earth-Mars periodic orbits are
discussed in tﬁis chapter. '"Promising" periodic orbits are
those for which the probability is high for the existence
of the actual, indefinitely long series of multiple flybys.

These periodic orbits also deliver more round trips to Mars
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in a given length of time than the less '"promising" periodic
orbits. All of the circular coplanar periodic orbits found
in the investigation of this thesis are presented in Appendix
E, but only a small number of them are very "promising." The
most promising is periodic orbit M4-1. Other periodic orbits
which are also to be considered in some detail here are M5-1
and M5-2. Those periodic orbits numbered Mé-... or greater
can be considered unnecessarily long for the number of round
trips to Mars which are achieved.

Better understanding can be obtained by referring to
the figures of this chapter as one reads the chapter. Fig-
ures 5-1 through 5-4 give the distance from the Sun as a
function of the time for periodic orbits M4-1, M5-1, M5-2,
and M6-1, respectively. These figures present the circular
coplanar case. The vertical lines in these‘figures indi-
cate oppositions of Earth and Mars. The large dots indi-.
cate points and times of flyby encounter with the planets.
Figures 5-5 and 5-6 give respectively the path of periodic
orbit M4-1 in the circular coplanar case in a Sun-centered
inertial frame and in a Sun-centered coordinate frame which
rotates with the Earth-Sun line. In Figure 5-5, the direct
returns are not shown in order not to confuse the picture.
The Arabic numbers indicate consecutive planetary encounters

beginning with the encounter immediately following the
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orbit of Mars

III

orbit of Earth

Figure 5-5. The interplanetary trajectory legs of periodic
orbit M4-1 shown in a sun-centered, inertial coordinate frame.
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orbit of Mars

Figure 5-6. Periodic orbit M4-1 shown in the Sun-centered
coordinate frame which rotates with the Earth in its
orbit.
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symmetric return brajectorv st Barth (refer to Figure 5-1).
The four numbers at Earth in the "middle'" of the trajectory
and in the middle of the figure indicate the four encounters
agssociated with the three full revolution reburns at Eartn.
I'ne Roman numerals number the different trajectory legs in
the periodic ortit; the symmetric return at Earth is the
first trajectory leg according to this numbering system. The
same numbering system is used in both Figure 5-5 and Figure 5-6.
Almost all of the encounters and trajectory legs are shown in
#igure 5-95, even though the resulting figure appears to be
quite confusing, because some of ‘he trajectory less almost
lie on top of esch other. T{rajectory leg number V is not
shown in Figure 5-6, however, because it is confined to the
near vicinity of a line pervendicular to the plane of the
planetary orbits, which passes trhrough the Earth. On this
full revolution return, the vehicle trsvels about 0.18 a.u.
above (or below) the plane of the ecliptic, then travels
the same distance below (or above) the ecliptic, and finally
returns to Earth. The common and differing characteristics
are easlily seen in Figures 5-1 throush 5~4. The character-
istics can alsc be seen from the listing of Appendix E,
al though they are not quite so obvious there.

Une should note that the character of the round srip
trajectory segments to and from Mars is always similar for
the periodic orbits found. Since these round trip trajec-

; ‘ o . ~ 4 .
tory segments come from the round trip charts of Ross |, this
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similarity implies that these trajectories are not too far
apart on the charts considered. This is indeed the case.
All of the round trip trajectory segments come from the
central regions of Figures 4-9 and 4-10; these two figures,
as the reader will remember, cover almost the same region

of arrival and departure dates. None of the round trip
trajectory segments come from the high speed symmetric trips
of Figure 4-8. Each of the round trip trajectory segments
which is used in a periodic orbit consists of two trajectory
legs: one from Earth to Mars and the second from Mars to
Barth. The first leg from Earth to Mars, in each case,
involves a relatively short transfer time which always spans
the time of opposition of Earth and Mars. The second leg
from Mars to Earth always involves a relatively long trans-
fer time which never includes the time of opposition of
Earth and Mars. This long second leg always travels well
outside the orbit of Mars.

In addition to this Earth-Mars-Earth round trip tra-
jectory segment, each periodic orbit involves its recipro-
cal. For the circular coplanar case, the reciprocal is
always exact. For the eccentric inclined case, the recipro-
cal is only approximate. A more detailed explanation of the

'Eeciprocaf'can be found in Ross4 or Chapter 4 of this

term
thesis. This use of the reciprocal round trip trajectory
can easily be seen in Figures 5-1 through 5-4. The recip-

rocal trajectory, of course, involves a long trajectory leg
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from Earth to Mars, followed by a short trajectory leg from
Mars to Earth.

A final common characteristic of the circuler coplanar
periodic orbits found, all of which are listed in Appendix E,
is that each one involves three full revolution returns
between the two long trajectory segments between Earth and
Mars. For all of the periodic orbits found, between the
long transfer between Mars and Earth and the long transfer
between Earth and Mars, there exist three full revolution
returns (3FR) at BEarth. The fact that the series of direct
returns is the same in the same place in each of the periodic
orbits found is due to the fact that no other series of
direct returns was found at that point which resulted in
reasonable Earth-Mars-Earth round trip trajectories and
which missed Earth at all of the encounters associated with
the series of direct returns.

If this series of three full revolution returns had
not worked and if none of the other possible series of
direct returns had worked, then there would be no periodic
orbits of the type considered, except possibly ones involv-
ing a greater number of synodic periods to complete the
cycle and/or perhaps ones involvihg series of direct returns
which do not traverse the Sun the same numbern of times as
does the planet of launch and return.

There are a few additional characteristics which are

common to all of the periodic orbits found. Most of them
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are a result of the fact that the Earth-Mars-Earth round
trip trajectory segments are similar. As was mentioned
before, all of the periodic orbits spend a lot of time out-
side of the orbit of Mars. In the circular coplanar case,
all of the periodic orbits reach distances greater than
2.0 a.u. from the Sun on two occasions in each basic repeat-
ing cycle. The periodic orbits found seldom spend much time
or go very far inside of the orbit of Earth., The only times
that the periodic orbits reach very far inside the orbit of
Earth is on direct returns at Earth. One final observation
is that the hyperbolic excess speeds at Mars are always much
lafger than the hyperbolic excess speeds at Earth.

The characteristic which makes all of the periodic orbits
listed in Appendix E different is that each of the series of direct
returns, which lies between the short transfers between Earth

and Mars, is different.

5.2 Barth-Mars Periodic Orbits in the Eccentric Inclined

Case

Not much more can be said about periodic¢ orbits in the
eccentric inclined case, because the basic character of the
periodic orbits is well explained by examination of the
periodic orbits in the circular coplanar case. However,
several comments can be made. In general, when one goes
from the circular coplanar case to the eccentric inclined

case, the dates of actual opposition of Earth and Mars
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change; and the dates of encounter on a periodic orbit change
by a number of days each. In addition, the planes of the
interplanetary trajectory legs move out of the plane of the
ecliptic; and hence, because of the out-of-plane components

of hyperbolic excess velocity at the encountered planets, the
speeds at the encountered planets increase; and the distances
of closest approach during flybys frequently decrease, thereby
making collision with an encountered planet more likely.

The one thing which makes the numerical problem much
more difficult for the eccentric inclined case is the great
increase in the numerical dimension of the problem. The
basic repeating cycle is obtained by using the product divided
by the greatest common divisor of the number of Earth-Mars
synodic periods in the scheme of the basiec circular coplanar
case (4, 5, or 6) and the number of synodic periocds in 32
years (15). The M5-... periodic orbits are the easiest,
because they have a repeating cycle of 15 synodic periods cr
%2 years. Periodic orbit M4-1 is the most difficult, because
it has a basic repeating cycle of 60 synodic periods or 128
years; the numerical dimension of the problem in terms of
the number of independent dates and the dimension of the
matrix which must be inverted is seventy-five.

These changes in the eccentric inclined case are proba-
bly best presented in the form of statistics for each peri-
odic orbit. Statistics are presented in Table 5-1 for each
of the periodic orbits M4-1, M5-1, and M5-2. The statistics

are based on solar system Models I.B. and III.B. as the
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PERIODIC ORBIT

M4-1 M5-1 gg;g
Encounters at Earth next to 1F ZFR
the short transfers to Mars: next next to
hyperbolic excess speed in EMOS: HR HE
circular coplanar 0.257 0.249 0.245
average 0.260 0.276 0.244
highest 0.270 0.371 0.283
lowest 0.250 0.188 0.212
passing distance in Earth radii:
circular coplanar 1.54 1.78 1.42/2.06
average 1.40 1.65 1.%2/2.06
highest 1.63 2.52 1.73/2.41
lowest l1.21 1.07 1.02/1.81
turn angle in degrees:
circular coplanar 48.3 46.0 54,1/42.7
average 51.0 45.7 57.9/43.6
highest ‘ 57.8 80.7 67.5/54.8
lowest 44.6 37.2 41.4/%3.4

change in encounter date from
the circular coplanar case in days:

average -0.8
RMS 17.7
average abs. value 15.2

Encounters at Mars:
hyperbolic excess speed in EMOS:

circular coplanar 0.314 0.316 0.314
average 0.3%24 0.322 0.325
highest . 0.405 0.390 0.399
lowest 0.245 0.252 0.246

passing distance in Mars radii:

circular coplanar 3.77 .30 4,79
average 3,04 2.59 5.57
highest 7.63 6.86 14.22
lowest 1.12 1.00 1.31
turn angle in degrees:
circular coplanar 4.% 2.3 3.4
aversage 6.1 7.8 4.4
highest 11.2 11.1 13.6
lowest 2.9 3.3 l.4

change in encounter date from the
circular coplanar case in days:

average =~0.3
28.2
average abs. value 25.3

(Table 5-1)
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Encounters at Barth next to
the long transfers to Mars:

hyperbolic excess speed in EMOS:

circular coplanar 0.181 0.211 0.183%
average 0.195 0.216 0.195
highest 0.229 0.260 0.230
lowest 0.178 0.171 0.172
passing distance in Earth radii:
circular coplanar 1.30 1.55 1.3%7
average 3.60 1.53 2.64
highest 38.7 1.76 2%.53
lowest 1.16 1.31 1.11
turn angle in degrees:
circular coplanar 774 60.7 74.8
average 61.1 60.8 62.%
highest 83.0 80.8 86.2
lowest 6.3 51.2 9.9

change in encounter date from the
circular coplanar case in days:

average -0.8
RMS 5.9
average abs. value 4.7

Table 5-1. Statistics of periodic orbits M4-1, M5-1, and
M5-2 °
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circular coplanar and eccentric inclined cases respectively.
The statistics are based on all of the five possible varia-
tions for both M5-1 and M5-2. Statistics are based only on
the "a" variation of periodic orbit M4-1. Only the "a" vari-
ation of periodic orbit M4-1 was run on the computer due to
the large dimension (75) of the numerical problem and the
resulting large requirement for computer time. The passing
distances and turn angles listed under periodic orbit M5-2
for the encounters at Earth next to the short transfers to
Mars are in pairs to reflect the difference in having one
full revolution return or two full revolution returns on one
side of a half revolution return. These FR associated with
the HR are not optimally arranged. The minimum passing dis-
tance could be increased in several instances by rearrange-
ment of the FR and the HR. Complete cycles for these periodic

orbits are presented in the listings of Appendix F.

5.3 An Interplanetary Transportation System Based on

Periodic Orbits to Mars

There are several characteristics of the Earth-Mars periodic
orbits found which relate in particular to possible applications.
The first thing that one should note here is that for
the hypothetical periodic orbit Mn-i, there should be n
separate periodic orbits of this type. That is to say, if
the basic scheme of a periodic orbit requires n synodic
periods to complete, then there will be, in general, n dif-

ferent, indefinitely long sequences of planetary encounters.
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This fact can be easily understood by referring again to
Figures 4-1 through 4-4. Each of these figures shows the
basic scheme for a different periodic orbit along with the
times of Barth-Mars opposition. One can imagine a very

long strip of the type shown in these figures showing plane-
tary distance from the Sun as a function of time and showing
indications of the tires of opposition. Then Jjust imagine
that at each of the opposition times, the basic scheme of
one of the figures begins again and continues indefinitely

in time. Only on beginning the n+1St

pattern of the peri-
odic orbits will the pattern coincide with the continuation
of the first periodic orbit pattern.

A consequence of the fact that there are n separate
periodic orbits of a given scheme of the type Mn-i is the
availability of a short transfer between Earth and Mars and
between Mars and Earth during every opposition period. A
further consequence is that n vehicles would be needed to com-
plete an interplanetary transportation system based on this
hypothetical scheme. Since each oeriodic orbit pattern has
one short transfer from Earth to Mars and one short transfer
from Mars to Earth in the time of n synodic periods and
since there are n separate such patterns covering different
times of opposition, each time of opposition is covered by
one short transfer from Earth to Mars and by one short trans-
fer from Mars to Earth. In order to make all of these trans-

fers available, n different vehicles would be necessary.
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These n vehicles would complete a transportationsystem
based on this hypothetical periodic orbit scheme. Hence,
one can easily see in what way the periodic orbits with a
smaller n are more efficient; fewer vehicles are required

to complete a transportation system based on them. The n
vehicles are visualized as ccmpleting the Barth-Mars trans-
portation system by continuing in the n separate periodic
orbit patterns. In addition, shuttle vehicles are required
to transport material and personnel between the vehicles and
the encountered planet during a flyby.

One would also like to make good use of those portions
of the periodic orbits which are not the short transfers
between Earth and Mars. The short transfers are best used
for transportation. The long transfers between FEarth and
Mars are also available as transportation, although they
are less efficient because of the very long transfer times.
These long transfers could also be used for purposes of
interplanetary research between the orbit of Earth and the
inner reaches of the asteroid belt. The direct returns at
Earth could also be used for research and for purposes of
repair and maintenance of the vehicles.

Such a transportation system as described above offers
the opportunity for a relatively efficient and comfortable

system of vehicles traveling between Earth and Mars.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

The primary accomplishment of this thesis has been the
discovery of continuous, ballistic, periodic orbits visiting
both Earth and Mars. In order to obtain these periodic
orbits, several important techniques were developed. This
summary is a review of the successful technique.

First, it is important to remember that the patched
conic approximation discussed in the Introduction is used
throughout. Also remember that different approximations to
the solar system and ephemerides‘of the planets have been
used.

An important class of trajectory legs which are used
to make up & part of a periodic orbit are the direct return
orbits. There are several types of these direct return
trajectories. There are half revolution return trajectories
which return to the departure planet when it has completed
one half revolution around the Sun. There are full revolu-

tion return trajectories which return to the depar-
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ture planet when it has completed one full revolution
around the Sun and when one planetary period has passed
since the departure of the vehicle. In addition, there are
symmetric return trajectories which come in different
lengths. There are different symmetric returns which
return to the departure planet in either slightly more than
or slightly less than 1.407 planetary periods, in slightly
more than or slightly less than 2.445 planetary periods,

in slightly more than or slightly less than 3%.46]1 planetary
periods, etc. These trajectory segments vary in length
with the speeds at their ends. The existence of all of
these direct returns has been recognized by other workers
in the field and several have been usedl’2 in periodic
orbits. All of the above mentioned direct return trajec-
tories travel around the Sun the same number of times aé
does the planet from which the vehicle was launched and to
which the vehicle returns.

In order to be able to investigate all reasonable
possibilities of series or combinations of direct returns
to find suitable series for inclusion in periodic orbit
schemes, it was found to be very helpful to create a list,
which is given in Appendix D, of all possible combinations
of direct returns up to some maximum length of time. This
list is arranged in order of increasing length of time
necessary to complete each series of direct returns. The

Y

list also includes some comments on possible restrictions
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on the incoming and outgoing hyperbolic excess velocity
vectors at the ends of the series of direct returns so
that the required flyby maneuvers can be performed at each
encounter without intersecting the planet. The list will
not give the exact length of time required for the given
series of direct returns because of the possibility of the
varying lengths of time for the symmetric returns due %o
different hyperbolic excess speeds required; nor will the
list allow one to pick a series of direct returns of ex-
actly the desired length of time; but it will help one to
obtain a good starting point for computer solution.

1 and Menning2 found periodic orbits which

Hollister
join Earth and Venus. These periodic orbits involved
direct returns at both Earth and Venus. Obtaining periodic
orbits to Mars was expected to be and was found to be a
more difficult problem, however, because the small mass
of Mars makes the necessary flyby maneuvers at Mars impos-
sible, because the calculated trajectories intersect the
surface of the planet.

The approach used to obtain periodic orbits joining
Earth and Mars was to combine two Earth-Mars-Earth round
trips of Ross4 with two separate series of direct returns
at Earth in a "symmetric" manner. Use of the Earth-Mars-
Farth round trips as segments of the periodic orbit schemes

tried avoided the difficulty of making direct returns at

Mars. All schemes were first attempted in the case of cir-
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cular coplanar planetary orbits and were eliminated at that
point if they did not work with this simplified solar sys-
tem model. The two round trip trajectory segments which
are used in each scheme are "reciprocal'" to each other.
Reciprocity of trajectories is explained in detail in Chap-
ter 4 and by Rosé“, but briefly, a trajectory which is re-
ciprocal to another one is that trajectory whose encounter
dates are the negatives of the encounter dates for the orig-
inal trajectory when all dates are measured relative to the
date of opposition. The two reciprocal, round trip tra-
jectory segments which are used are centered around differ-
ent dates of oprosition. The two separate series of direct
returns are then used to connect the ends of the round trip>
trajectories. Two series of direct returns are needed for
each scheme, because each scheme involves two different
round trips as well as the two series of direct returns to
create the basic repeating pattern of the periodic orbit.
The basic repeating pattern in the circular coplanar case
must, of course, last some integral number of synodic peri-
ods of Farth and Mars.

This basic approach to the attainment of periodic
orbits can, of course, be extended to periodic orbits be-
tween planets other than Earth and Mars. It can also be
extended to involve direct returns at two different planets
and to include flybyvs of three or more different planets.

The inclusion of more than two planets requires a basic

L] ¢ &
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repeating relative pattern for the three planets which is
analogous to the synodic period for the case of two planets.
The approach,; however, is probably limited to the use of di-
rect returns at fairly massive planets so that the flyby
maneuvers can be performed without hitting the planet.

Computer solution is necessary in order to refine the
circular coplanar estimate of the periodic orbit scheme and
in order to improve the estimate of the actual encounter
dates for more accurate models of the planets which are in
eccentric, inclined orbits. The computer techniques used
are basically those of Menninge, although several: extensions
of his work weré made in order to handle more types of tra-
jectories. On the order of one hundred or so periodic orbit
schemes were attempted in the circular coplanar casej; of
these, 18 missed all of the planets or at least did nothing
more than graze a planet during an encounter or two.
Convergence to a feasible solution was achieved for
several.

One can then list in summary form the technical accom-
plishments of the thesis:

1. Several Barth-Mars periodic orbits are discovered.

2. A procedure is developed to obtain all possible

series of direct return trajectories in the vicin-
ity of one planet sc that one can have available

a list of all of the possible waiting times in the




Just such a list is made for Earth for direct
returns which go around the Sun the same number
of times as does Earth and which require a total
of no more than three synodic periods of Earth and
Mars to accomplish. It is the table of Appendix
D.

The concepts of symmetry and reciprocal trajecto-
ries are introduced and applied to periodic orbits
and periodic orbit attempts.

With this concept, & procedure is developed to
obtain good possibilities for periodic orbits
between two planets, given that one has a family
of round trips from one planet to the other and
back and given that one has a list like the one
mentioned above and given in Appendix D. The
method is probably limited to having the direct
returns at fairly massive planets.

Several extensions of the numerical work of
Menning2 were carried out, such as a scheme to
minimize the maximum turn angle for any specified
number of full revolution returns (FR), the
handling of the encounter speeds, the encounter
times, and the turn angles at the ends of a half
revolution return (HR), and the handling of tra-
jectories which travel more than one or two full

revolutions around the Sun.
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5. Suggestions were made as to how one might extend
this work by including direct returns which do not
go around the Sun the same number of times as does
the planet of launch and arrival, their inclusion
in the different combinations of direct returns,
and their possible use to form periodic orbits at

planets with widely differing semimajor axes.

6.2 Conclusions

The major conclusion of the thesis is that periodic
orbits connecting Earth and Mars have been déemonstrated to
exist under the assumptions inherent in patched conic anal-
ysis. The shortest period found was four synodic periods.
This would require a minimum of four spacecraft in order to
have one going and one returning on fast transfers during
each opposition period. The hyperbolic speeds at each
planet are competitivé with one-way transfers. Average
spéeds at Earth are 0.260 EMOS and 0.181 EMOS in different
parts of the period. Average speeds at Mars are 0.324 EMOS.
The passing distances at each of the planetary encounters
are almost always satisfactory for missing the planet with
reasonable guidance errors. The average minimum geocentric
altitudes during the encounters at the Earth in
the two differemnt parts of the period are 1.40 and 3.60
Earth radii. The corresponding figure for Mars is 3.04 Mars
radii. The closest the vehicle ever gets to the surface of

a planet is at Mars where at one point a minimum planetocen-
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tric distance of 1.12 Mars radii is reached. These numbers
are also characteristic of the other Earth-Mars periodic

orbits found.

6.3 Recommendations for Further Study

The author has four recommendations for further study,
and two of them have been made earlier in this thesis.

The first recommendation is that one look for periodic
orbits or at least long series of interplanetary trajectories
which are connected by planetary flybys of the three planets,
Earth, Mars, and Venus. One should begin by making trajec-
tory charts for all flyby trajectories of the types Earth-
Venus-Mars-Venus-Earth, Earth-Venus-Mars-Earth, Earth-Venus-
Mars-Venus, and Earth-Mars-Venus and their reciprocals. The
solar system model which should be used for these charts
should be the circular, coplanar, exactly symmetric and
periodic model (Solaf System Model I.A.l1). With this solar
system model, the trajectory charts can be applied approxi-
mately to a large period of time which is centered around the
year 1995, The lists of series of direct returns (similar to Appen-
dix D) should then be used to attempt to join various differ-
ent trajectories with series of direct returns at Earth and/
or Venus.

The second recommendation is that one extend the know-
ledge of direct returns to those direct return trajectories

which do not travel around the Sun the same number of times
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as does the planet of launch and arrival. There should be
many different types of such direct returns including ones
which travel around the 8un more or fewer times than does
the planet of launch and return. These should be separable
into classes of direct returns which are analogous to the
three different classes of direct returns which are dis-
cussed in Chapter 3. These additional types of direct
returns should then also be included in a list of all pos-
sible combinations of direct returns which will be similar
to Appendix D.

The third recommendation is that one extend the class
of multiple flyby trajectories considered to iqclude those
which require small thrusted velocity changes. Small thrusted
velocity changes or a small continuous thrust will be needed
in any case for guidance. The addition of small required
changes in velocity may make possible some convenient series
of encounters which would not be otherwise possible. One
would still want to keep the thrusted velocity changes as
small as possible. This extension would probably be useful
in the eccentric inclined case after one has found periodic
orbits which converge in the circular coplanar case; the
periédic orbit schemes which do not converge in the eccentric
inclined case could be useful with the addition of a few
small changes in velocity. In addition, this extension
could be useful, particularly with low thrust, in creating

trajectories which do not exist as free-fall trajectories
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even in the circular coplanar case.

The final recommendation is that the mathematical model
of the different periodic orbits found be improved. The
more accurate methods should consider a series of flybys
determined by a periodic orbit; but the initial and final
encounter dates should be specified by the researcher; and
the length of the periodic orbit segment which one should
investigate should be limited by practical considerations
such as the amount of computer time which one desires to
expend and the amount of the periodic orbit which one desires

28

to investigate. Bayliss is carrying out such an inves-

tigation which will apply to all multiple flyby trajectories.
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APPENDIX A

COMPUTER PROGRAM

The following program is designed to look for periodic
orbits which involve Earth, Mars, and Venus. It calculates
the speed differences at the planetary encounters. It forms
the matrix of derivastives of the speed differences with
respect to the planetary encounter dates. Then it tries
to make the speed differences approach zero, first by a
steepest descent method and then by a Newton-Raphson type of
iteration. Finally, the turn angles and planetary passage
distances are checked.

Dates are in Julian Date minus 2440000.

The patched conic approximation is used throughout with
the size of the sphere of influence neglected.

The ephemerides are based on the mean orbital elements
of 1960.

The following are some of the more important parameters

in the program along with explanations of how they work:

A--Semimajor axis of a planet.

PER--Period of a planet in days.

GFP-~True longitude of perihelion for the planet.
E--Eccentricity of the planetary orbit.
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TJP-~-Date of perihelion for the planet.
Subscripts for the above arrays and elements of the array NP

refer to the planets according to the following list:

l-<=Earth
2-=-Venus
B—=Mars

CYCLE~-Basic repeating time of the scheme in days.
NDATE-~The number of encounter dates read into the program
which is one more than the basic dimension of the

problem.

NP-~Column matrix of planetary encounter dates (in the case
of FR and/or HR, the initial date for each series).

ALONG--=Column matrix of the number of FR associated with
each planetary encounter up to and including 9. When
ALONG(I) is greater than 9, the nonzero first digit
indicates that an HR is to be added to the series of
FR, the number of which is indicated by the second
digit. The first digit will become LEHR(I).

LEHR-~Column matrix which becomes at each location the first
digit of ALONG in the same location. A nonzero LEHR(I)

th

indicates that an HR will occur at the I planetary

encounter. LEHR(I) becomes LEHRI for the Ith pass
through the last part of the program. If LEHR(I) is

1 through 5, the half revolution return will be above
the orbit plane of the planet encountered; and if it is

Y

6 through 9, the HR will be below the orbit
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of the planet encountered. The scheme of how many FR
are put before the HR and how many after is indicated

by the following table. In each box, these numbers

number of FR before the HR
number of FR after the HR

are indicated by

second digit in
ATONG (I) 1 2 3 4 5 6 7
first digit
in ALONG (I)
which becomes
LEHR(I)
1 1 2 2 4
lor6 S|t | %15 |3 % 3
0 1 1 2 2
2 or 7 212 |3 |3 |¢% 7
2 4 4
5 or8 513|213 %
0 0 1 1 2
4 or 9 3 I I '5- 5
4 .6
> 5 132 ¢

Table A-1. The arrangement of a series of FR before and
after one HR according to LEHR(I).

CIR--Column matrix of the number of complete revolutions of
the Sun made between one planetary encounter and the
next up to and including 9, except that in the case of
a symmetric return; it is in general; one less than the
number of complete revolutions of the Sun before the
next encounter. As with ALONG, when CIR(I) is greater
than 9, the first digit indicates something different

than does the second. The second digit means
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essentially what is explained immediately above.
CIRC--Becomes the second digit of CIR(I) in the subroutine.
NTEST--Becomes the first digit of CIR(I) in the subroutine.

It decides which of the 2N+1 possible solutions of

Lambert's problem is to be chosen, where N is the number

of full revolutions of the Sun which may be made by

the vehicle. There are two separate situations in

which one determines what NTEST does: an interplanetary

trajectory and a symmetric return trajectory.

In the case of an interplanetary trajectory, the
meaning of NTEST (or the first digit of CIR(I)) is
indicated by Figure A-1. N, the number of full revolu-
tions to be made by the vehicle, is simply decided by
the number CIRC. Figures A-1 and A-2 are sketches of
semi-major axis versus time of flight as may be found
in Chapter 3 of Battin®.

In the case of a symmetric return trajectory
where the departure planet is the same as the arrival
planet, the situation is somewhat more complicated. If
NTEST=0 and if the number of full revolutions of the Sun
made by the planet is CIRC+1l, then the subroutine will
choose the branch of the curve corresponding to the

semimajor axis which is not the semimajor axis of the

planet as discussed in Chapter 3 and in Menning®. This

choice results in a symmetric return which revolves

around the Sun the same number of times as does
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time
of TFY ~
flight

semimajor axis a

= =

Figure A-1. Lambert solution selection for an interplane-
tary trajectory.

time
of TRY 4~ - - -3
flight NTEST = 3

semimajor axis a
e

£
&

Figure A-2. Lambert solution selection for a symmetric
return trajectory.
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the planet. When NTEST is not equal to zero, the
scheme is best demonstrated by Figure A-2.
TEST--Convergence criterion for SUM (below).
NDM1 = NDATE - 1
NDP1 = NDATE + 1
V-~Column matrix which gives the speed differences at the

planetary encounters.

NDM1 5
FOX = 37 (100 V,)
1=l

NDM1
SUM = 3TV,

i=] v
ARRAE~-The formed matrix of derivatives {E—E]
(NDM1 x NDMl) where v is the column matrix of speed

differences (V) and t is the column matrix of encounter
dates (DATE). This storage area also contains the
inverse of this matrix for a Newton-Raphson step.

MINV--A matrix inversion routine contained in the I.B.M.
Scientific Subroutine Package (SSP).

STP-~Step size for the numerical differencing used to
form the matrix of derivatives g—% . Its units
are days (STPI = 1/STP). B

VX4RL ,VX4GL ,VX4ZL ,VX4TL-~Column matrices containing respec-
tively the R, G, Z, and total velocity components
relative to the planets at departure points from
the planets. |

VY4RA ,VY4GA ,VY4ZA ,VY4TA--Column matrices containing respec-

tively the R, G, Z, and total velocity components
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relative to the planets at arrival points at the planets.

VHYPA ,VHYPL--Column matrices containing respectively the
arrival and departure hyperbolic excess speeds.

VSPR,VSFG,VSPT--Column matrices containing respectively the
R, G, and total heliocentric velocity components of
the planets at the departure points.

VSEFRA,VSFGA ,VSPTA~--Column matrices containing respectively
the R, G, and total heliocentric velocity components
of the planets at the arrival points.

GLON-~Column matrix containing the true longitudes of the
planets at the encounter points relative to the
equinox of 1960. The units are degrees of arc.

DHICK~-Column matrix containing the semimajor axes of the
trajectory legs.

DHICK2--Column matrix containing the eccentricities of the

trajectory legs.

There are many other parameters which might be included
here; but the ones above are most of the important ones.
Other parameters are explained by comments within the program
and the main subroutine.

A listing of the computer program and the ma2in sub-
routine follows and completes the appendix. The language

used is Fortran JIV.




T00
701
708
TO?
703
704
06

NTMEN

AT AN N -

COMMN
1
2
2
Py =
RTN=1
ASC AL
SYP =
STpy
YR =
A{1)
AC?2)
AL3)
FO1)
F{2)
£y
nDER{Y
PER(2
pER{
GEP(L
GFPI{?
GFP(3
Tap(1
TIaR(?
TP {3
RFEAND
RFANI
READ(
READ
READ
WRITF
WRITFE
WRITFE
WRITE
WRITFE
FOaMA
FARMA
FARMA
FARMA
FNRMA
FARMA
FRMA
nn 71
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SINN A{Q), PER{QO), FlO), T4PEO}, FP{9],
NB{ADY, DATE(ONY, PATELIONY, ALNNG{ONY), TIR(ONY,
GLONM{OOY, T FHR{ON), NDHICK({Q9)Y, NDHICK2(ON]),
UX4RL (00 VXAGLI Q0 JVXATL (AN VXATLIN0}, VYVYaARATGN],
VY4GAT QD) VYLTALA0) YYETALANY, VHYDL {aN), VHYDALON],
V{any, vC(any, 2Afany, DFI T{9N}, VeprREnNny vepTiany,
VSPR{ANY, VSPTA(QAN),VSPLALGN) YSDRAIDN],
VLN{TIR1 ) VANTTIR2Y JARRPAFLAN, 00,1 (AN} M{ONY ,DMIRRIATNAN)
N PTRTNGYR, PFRRIAGF,TUP,GCFD, NP, NATFL ,CTR t FHA
CINNDHTICK NDHICK 2, UXLRL G UXAGE UXLTT JVUYLTE o VV4LPA,
UYLTGAVYLT A VYLTA, VSPY,YSPR,VSPR, VSPTAGYSPLA VCDODA,
NFRR
1,1415926526
an,/p1
s o= 1IN0,
1.1
= 1,/57T0p
365.75A%6
= ].(:‘
= 0,722337
= 1,523691
= D.D1LAT2A
= N,NNATAO3
= D.093341
} YR
) 224 ,700R
Y = 68A,Q97954
) 1D2.,25253
¥ 131.,.0Nn831%
) 335 ,337A0
} o= 4#2,.124962 + {4 *0FR{T) — 3065,
) “2T.01TT76 + (AR XDFER{2Y) - 3AINAKE,)
) +#146,N8008 4 122 ,%PFPI) - 3INK5,)
(R,701) CYTLF
S,7003 NDATEL(NPLITF,1=1,NDRATE)
SeTNIVINATEL T) o T=1 ,NNATF)
(5,705} (ATLOMGTTY, T = 1,MDATE)
{5,705} {(CIR{T), T=1,NDATF)
(6, 7TD2Y CYCLF
{A:, 703} (NATF{I),I=1,NPATF)
{(6,704) [(NP{TI-T=1,NDATF}
{67061 [ALDNGITI,I=1,NDATF)
(6, 706) (CIR{T)s T=1,NDATF)
T (12, 8Xe (70771} 1}
T{6F12.6)
T (40F2 .0}
T ("1 CYCLF =%, F13,32 , fNAYS?)
T L1HO, 10F13,5/7 (1H 5 10F13,5 )
TLLIHO, 650 TY,1X1H}
T {1HO, I0F6.1; 2¥e 10FA.1/ {1H 1976, 1,2Y,10F6,1 1)
q I = 1,NNATF

t

Wwonon 1l

o
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LPHRA(TY = 0O

710 1F {ALNNGTTY LT, ©,9009]) cn TN 719
| FHRIT) = LFHR {(T) + 1
ATONG (7Y = ALONGHLYTY - 10,0
O T0 710

710 COANT INHE
NOWPK=0
1 TER=?
NAYS=5K,0
TLFSS=0
CNEYT=N R
STNRPFE=10NNAN,
NDOM] =NNATF-]
NNPYI=NNATF+)
TEST = NNMIx2 F-4
NATEINNDD I I=NATE(? Y+CYCL F
MO(‘\]DP]‘):MD(?)

CALCULATINN OF FUNCTION VAL 1IE

4 NN 1N TE=1.NDMT
NPV=ND{TT4+1)
NPY=NP(TT)
ALNON = ALANG{TT)I%PFR{NDY)
TEF (LEHR{TTY 0T, 0) AILNN = ALNN + 0O 5HDER{NDX)
NATEN = NDATE(ITY + ALON
NATEA=NATF(T141)
CALL 1 AMBRT{DATEN NATFA,TT)
19 (NFRR,NF,1) GN TN 5
IF [TTFR,FR,.2) AN TN f15
N T 9
5  VHYDL{TT) = yX&avTi (17}
TE (LFHR(TT)Y AT, N JAND, TI NF, 1)
1 VHYDPL (TT) = UX4TI (TTY)*USPOA({TT)/yepsllT)
10 VHYOA({TI4+1))=VY4TA(TT+]1)
YHYDA(T ) =VHYPAINDATS)
nno2n =1 ,NNMY
20 V{I)1=VHYDL {T)=-VvHYPA(T)
VHYPL(NDATEY = 0,
VINDATFY = 9,
WRITE {6,777)
77T FORMAT {1HM
WRITE {A,707) (NATFE{T), VHYPAIT), VHYPL{T), VIT),
1 NDHICKET), NHICK2{T)Ys GLNM(TY, T=1,NNDATF)
TNT O FNRMATI(IH , TIF12.,4, 5X}1V)
SUM=n,0
FAX=0.0
N 21 T=1,NDMI
StiM=SUM ¢ ARSIV(TY)
2 FOX=FNX & {100, :VITIIR1NN, =VIT )}
WRITF(A,347Y) TOX, UM




i 20ae Ban Tan

-

247

91

Qaq?

1758

4n

2n

1
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FARMAT {(AH FNX = ¢ F12.A, 55X, HHSIHM =

PROCEDIRF TN RENMICF STEP SY7F
(SUMIVIT)®%2) } JNMCPFASFS,

TFIFNX 1 Y,STNRFY} 6N TN RA?
NOWRK = NOWRK + 1
IFINPWRK,FQ. 1N} D 7O R”15

11 FSS=1

N1 B9l T=1,NDM
NELT(T)=NDFLT(TY/2 .0
NDATEF(T)=NATE(TY + DFIT(I)
NDATE(NNDATEY=NATF(1) & CYCLF
GNn TN 4

STNAPE=FNYX

TELTITER  FN 2 AND, T1L.FSS. 6T .00
MOWRK =D

TY ESS=N

IF (SUM GF, 0N.300 ,AND, NAYS
TTFR=1

NAYS =%,

TF {(SUM LT, TFEST) N TN Al4

TF FIHNCTTINN

NAVS=n,"*NAY

T 0.2

CALCULATINN N7 PART AL DERIVATIVES

DN 40 TT1=1.NDM]

MEX=NP(TIT)

NPY=NP {1741}

AM NN = ALONG{TTIXPFRINDPY)

TE (LEHR{TT) ,GT, N} ALNON =
NATEFN = NDATF{TT) + ALNN & STP
NDATEFA=NATF(TT+1)

CALL LAMBRTIDATFN,NATFA,TT)
IF{NFRR,FQ, 1} GN TN 815
VIENID®TT) = YX4TIL (TT)

TE (LFHR{ITY GT. N AND, 1]

F12.6

VAL IE

N

CIANARS !

/

ALNN + N, 5%DPEP (MDY

NEL 1)

VENI2ARTTY = UXATL{TTIRVYSPAALTTY/YSPRITT)Y

VAN{DP®TIT + 1) = UvaTALTT 4+ 1)
NATFEN = DATELTIT) + ALON
NATFA=DATF({TT1+1) + STP

CAT L LAMRRT{DATFENNATFA,TT}
TFINFRRP . FO .1} 6N TN R1SK
VLN{2%TT + 1) = VUX&TL(TD)

e (EHR(TTY GT. 0 AND, 1T

VENE2RTT ¢ 1) = UXATLITTIRYSPRACTTY/YSPLLTT)

VANI?2%TT + 2) = VY4TA{TD + 1)
W‘] ?0 ¥ = 11an‘

NN 30 = J1.NNPI
ARRPAF(T1.,J¥=0.0

N 50 K¥=7,NDM1

MNFE. 1)

)
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ARP AF{ KK, KK ) =(VI N{2XKK) = VAN{D?%KK) = VI(KK)})%STDY
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283

48

AN

99
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21
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ARRAF {KK~1, KK} =(VLN(?2%KK — 1) = VHYP| {KK - 1))%<TDY
ARRAF{KK + 1, KK} ={-VAN{?XKK 4+ 1} ¢+ VHVYDA{KK + §)}*STDY

ARRAF (1,11 = (VLN({?) — VAN{2ANNATF) = V{1))*CTnT
ARRAF{2,1) = (VHYPA{?) — VAN{R})RSTO]
ARD AF(NDM1,1) = (VIN{P*NDATE = 1) = VHYDL{NNU]))#cTDT

ARRAF (1 NDMYT) =ARR AF{NNAT E, NNMY )
TFLTTFR,FOL.1Y) 6N TN 2a7

STEFPEST NESCENT STFD

nn 7N {:]_,Ml')Ml

HF‘,T(‘,=OOO

nN TN g=1 ,NDM]

NELTETY = NFLTOTY 4 (10000N  NxARRAC L J, TY Y #V ()
N = N0

N TN 284

CANTINUE

MEWTNAN RAPHSNN STEP

IN=n

DN g4a T=71,NPM1

NN 48 J=1,NNM1

IN=T1N+1

NIIBR{TIN) = ARPAE( J, TYXASQTALF
CALL MINVINIBR,NNMI Nyt , M)
In=n

NN 84 T=1,NNM1

NN R4 J=1,NNM)

IN=TNs}

ARRAF{3,7T) = DURR(TN)*ASC AL F
NN 98 T=1,MNNMY

NELT(TY=DN.N

nn QR J=1,NnM11
NELTLIY=NFITLTY + CNFUTHAPPAEL(T , 1Yy {1}
COANT INHIE

1 ARGEST TMOCREMENT EOHND

RIANEL=ARS(NELT{1})
NN 91 T=2,NNM]
TECARSIDELT(T)) o TLARS(RIGDEL )] ARIGNEL=ARSINELT(1))

THE INCPEMEMTS TN THFE FMNrONTER NATEQS ARF SCALTN SN

THAT THE [ ARGFST IS FQUAL TN {NAYSY EXCEPT TN THF

MEWTNMN RAPHSON TTERATINN WHFRFE THF [ ARGFST CHANAGE TS
SIMPLY RFQUIRFEN TN 8F | FSS THAM  (NAYSY,

TE(TITER  FN. 1 AMND,RTIGNEL (¢ T, DAYVSY GN TN 92
SCALF=NAYS/BTGNFL
N 93 [=1,NDM)
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NELT(IY=SCALFRNFL 77}

WRITF {6,841) Ne(DFLTIT)y T=1,NNMYY
FARMAT (1HO, F13,A / {1H o 10F13,.6°) )
nn RN T=1,NNMY

NATF(I)=DATE(T)=DNELTI(T)
NATE(NMDATFEY=DNATF(Y) + CVYCLF
NATFEINDPL)=DATF(?) 4+ CVYCLF

6N TN &

CANTINOF

e o i e e e ksl e e vk s ol die e e e sl ook e ok e o s e i ot Ok e st Tk sk e e e sk ¥z e ol K e i oK v e e ol e Tk ok

AL NF THF REST NF THFE MATN PRNOGRAM CAICHLATES THFE TioN
ANGLES AT THF DL ANFTARY ENANHMTERS,

VH 1S THFE EXCFSS HYPERANLIC VFINCTITY,

RA IS THE MINIMIM ALLDWARLE RADTIIS TN PLANETARY PANYT,

VE 1S THF CIRCULAR NRATT SPEFND TN FMNS AT THE D) AMET?C
SHREACE,

TMAX TS THE MAXTMUM TURN POSSTRLFE AT THF DI ANET TN
NUESTINN FNR THFE VALIIF NF THFE AL NMWARLF RANTHS,

TMAXD 1S TMAX TN NDFGRFFS,

CO £ CND ARE THY HALF CNNE ANGLFS WHICH PrPMISSTIRLF
FUILL REVALUTION VFLNACTTY VECTNRS MAKFE WITH DY ANFT
VELNCTITY VECTOR,

TR £ TRN ARF THE ANGLES RETWFFM THF PLAMET VYEINCTTY VFECTAD

AND THFE 6 AXIS,

{ AN N AT THE ENN NR NFEXT TN THE FNN NE A YARTAR|F
PBSITALL Y MEFANS THAT THAT VARTARLFE HAS TN NN WITH
THF DLANETARY FNCOUINTFEP JUST RFFNRF NEDARTURE FRNM
A PLANET AT WHYCH HAS REEN FER  AND/AR  Hp )

RALY) = 1.0
RAL?) = 1,0

RA(3) = 1,N

VCI1)=0,2hk4

VC(2)=0,7243

Vr(3)=n,121
VY4RA{1) = VY4RAINDATE)
VYLZGAL1Y = VY4LGATUNDATFE)
VY&LZ7A{1)Y = VY47AINDATE)
VY4TA{1) = VY4TA{NDATE)
VSPTA(1) = VSPTAINDATF)
VSPRA(1)Y = VSPRA(NNATE)
VSPAAT1Y = VSPGA(NNATE)
NN 440 T=1,NDMY

=NP (1)
LHRM = 0

LFHRT = LFHRITY
VH=VY4TAL{ T
VHA = UYX&4TILITY
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TMAX=2 O%ARSIN{Y. /{1, + VHEVHZ(VOINY®»VI{N))YY
TMAXN=TMAXXRTN

CLEVI=ARPSINIVYLTA(T}/VHIXRTDN

FIL FYN=ARSTNIVXAT L {T)Y/VHDI®RRTN

N = ARFOS(VH/{?2 . 0%YSPTAIT)))

TR = ARSINM(=-VSPRA(T)/VSPTA[TY)

ron ARCOCIVYHN/I D . OXYSPTIT) )Y

TRA = ARSTIM{-VSDD({T)/VEPT(T))

ALG = ALONMGTT)

TE (ALN CT, 0,0 (NR, {EHRT AT, 0}y (N TN 4919
WRITEI(AG4DT) T,DATEIT) VH,TMAXD,DA{N)

FAORMAY(IH ,/7/7/7,14H STMDLE FILY-RY 2Y ¢ T242X,4(C15 4,0X))
WRITE(A,?Q7)

FARMAT (v R, G, AND 7 COMDNANENTS NF ARRTVAL AND | ALIMC MY,
) YYEINCTTIFS——t )

WRTITF{A,475) VYLRATTY  YYLGALT ) yY4T7ALTY UXARL (T,

1 VX&GLIT Y yXaZL (1)

1]

TURN TS THFE REQUIREN THEN ANMN RT [§ THF RANTHS NF Tuc
PATNT NE CLNSEST APPRNACH ENR THRE SIMpLF £l YAV,

TUBMN=ARCODS{{VY4LRALTYAVXLPL{T) + YYAGAIT)IXYXAGHIT) +
1 VYLTZACTIARIXAGTL (1Y Y/ (VHRVHO) )
THRND=TUYRNXRTN ;

IF (ARS({TUON) LT, 1.F-5} THON = ), F-=8”
RY=VOINYRYOINY*R (Y ,/STIN(THRN /2, ) 1,.) 7 (VHRYH)
WRITE{/, 2073)

FARMAT{IH L,34HTHRNS AND MIMIMUM RADTAL NDISTANMCER)
WRITFE{As 428) THRNDN,RT

ENRMAT{IH ,ATF10,.4,2X))

WRITF{A,?2Q4)

ENRMAT (1H S 10HFLFVATTONS)

WRITF{6,425) FlLEVI,FLFVN

TE(TURN LY, TMAYY) G0N TN 440

WRTITF{A,4N3)

FORMAT(IH ,20HTHTS TURN THMPOSSTRLFY

nN TA 440

{

£N 1S THE HALF-CONE ANGLF WHICH OFRMTICSIRL € S -PoVN~
LUTTNAN VFLACTITY VFCTORS MAKE WTITH THE DL ANET Y& Or 17TV,

TR TS THF ANGLF RFTWFEM THF DLAMFT VFELACTITY VEATNR AMND
THE 1 AXTS,

CANTTINIFE

C1=SINILMAVYLTALT) /VH

Co==SIN{CNIX(CNSETRIXVVARA(T) + STN(TR)RVYLGALTY) /VH
CA=COS{CONIX{STN{TRIKXYVALRA{T) — CNAS{TRIXYVAGA(TY)/VH

C4 = =STN(CNDYX{COSITRMYRYXARL (T & STMITRAOPAYYSLSL(T) ) /VHD
r5 = COSEENNYR{SIN(TRO XY X4RL (Y = COSTTROVAVYYAGL (7)) /VHN
Ca=STNICN)Y=SINICD)

CT7=CNS{CNYXRCNS(CN)
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490
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CR = SIN(CNNI%yX47LITI/VHN
THETAT=ARCNS{CI/SORTI{CI®CY &+ C2%02))
THETAN=ARCNS{CR/SNRT(CAXC] + (4*xr4))
TF{C2.LT.0.0) THETAT=2_0%PY —~ THETATY
TFIC4 1L T,0.,0) THETAN=? 0%DP] - THETAN
THEIN=THETAT%RTD

THEON=THFETAN®RTN

TUeNT 1S THE MINIMIM THRN REQUIRED TN THRM THE TNANUIND
HYOERANL TC VELNCTITY YECTNR INTN A VEILNCTTY YELTAD
PROINIICTING A FILEL REYDLUTINM PETIIRN (FRY,

THRAN TS THF CORRESDNANNDTING ANOCIT FNP THE nUTARNHIND
VELOCTTY VFCTOR,

TURMYI=ARCAS{CI%CNS{THETAT) + C24SIN(THFTATY) + r3)
TURNN=ARTCNS {CRXCAS{THFETANY + CA4XCIN(THETANY + RY
THRNTD=T'RNTXRTD

THRNNAND=THRNNAXRTN

NIF=ABS{THETAN-THFTAT)

THETAS=THFTAT

IF{THETAND LT . THETAT) THETAS=THFETAD

THETAL=THFTAS + DIF

ATOM=ARCNS(CIXCOS{THETAN) + COXSTN{THFETAN) + (1)
ANIM=ARCAS{CAXCNSITHETAT) + C4XSTNITHETAT) + %)
ATTMN=ATOMXRTD

ANTMD=ANTM*RTNH

TF (LEHRT LE, DY 6N TN 419

¥ * #* b A * * ¥e * o3 * * * e

THE FOLLNWTING SECTINN NDNRES THE CAICIHATINAN FNAR AN HD
AND A SFRIFS NF  FR,

WRITE {6A,520) ALOMG(TY, DATELT)Y, DATFI (1)

ENRMAT (//7/7/7+ ¥ THIS SERTFS NOF ENFCAYNTFERS TNVYNLVES OMNFe
o' HR  AND A SFRIFS 0OFY, FA,1, ' F2, ARRTVF—~~1,
F18S,6¢ 2X%X¢ 'LEAVE—-=%, F15,4 )

TF (LFHRT LT, &) G0N TN 490

17D = =1

LEHRT = L FHPY - §

CONTINUE

ALGDT = ALONG{TY/ 2,

ALGTE = AMODIALGDT,1 .}

ALG = ALGDT 4+ ALGTF + 1,

ALOGN = ALGDT = ALGTF 4+ 1,

I[F {(LEHRT .67, 1} GN 7O 531

6o TN §29

TF {LFHRT ,GT, 2% G0 TN 8§22

ALG = ALG - 1.

ALGN = AIGN ¢+ 1,

G THh 529
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522 IF (LtFHRT .GT, 3) GN Tn 523
ALC:MCf!.
ALAN = ALGN - 1,
LN TN 8209
521 IF ({FHR] AT, &) 6N TN &824
AL = ALG - 7,
ALGN = AILGN + 2,
"N TN §29
24 CONTINMUE
ALG = ALS + 2,
ALGN = ALGN - 2,
52Q CANTINUE
THETHR = APSYN(TAM{TR)/TAN(CN) )

TF (717D LT, O THETHR = PY - THETHP
THEHREL = ARSIN{ TAN{TRNY)/TANICNONY )
TF (170 GY, O) THEHRE = DV =~ THIHDY
I#pNS = 0

TE (ALG .GT, 1.00NN1Yy G0 TN anp

TURN = ARCAS(CIACNAS(THETHR ) + F2%STINITHITHRY 4+ 1)
TURND = TUPN%DLTD

RY = VOINI*ROR{ 1, /SINITURN/2,) — 1,)/VH%%XD

FLFV = ARCOASITNSITHETHRYXSIMICD) I%RTN

IF (TURND ,G5F, TMAXND) TMPAS =
WRTITE (A/,53%) VH, VVY4RA(T), VY4GALITY}, VYATA(T), TuA¥XN,
1 TURND, RT, FLFV], FLFY

522 FNARMAT [PQ{(7FRN  FR RFFNRF THF HP)})~==SPFEN¢ P, 0,7 AP,
TRIVAL VEINCTITY® AL LOWARLF THENY DFOUTPFN THAM 4 ¢
IRANINS* FLEV Tax FITV TN HRxt/
1H 4 F9.5¢ 33X, 3FOQ,5, INXy, FR,2, BX, FR,2, t,1,
Fh,3, BX, 2(5X%, FR,?2} }

ALG = ALGN

IF (ALG 6T, 1.0001) GN TN 28N

527 THRN = ARCOS{CR%CASTITHFHRYL Y 4+ C4XxSTN{THFHRLY + R)

TURND = THRNXRTDH
PT = VOIN)YARX2R(Y, /SIN(THRN/D? ) — 1, )/ VHN®R%D
FI FY = AQCAS(ANSITHREHRL Y xCTINICNN) ) %RTN
TMAXAD = RPTNXD  NXARSTINI{L /(1. + [YHO/VYO (MY Yx*2Y )
TE (THUPNND GF, TMAXNNY [MPAS =
WRITE (A, 8341 VHN, YXL4RYT TV, YX4GLITY, VX471 (T}, TMAXYNN,
] THRND, RT, FLFEV, EITFVYN
534 FNRMAT (tN{7FRN FR AFTFR THE 4R)-—gPreN%x P,G,7 NEDPY
1 TARTURN VFLNCTTY® ALLQWARLF TURAM RENTIPEN THRM & ¢,
2 TRANTHSR FILEY £RNM HRX FI Ry OYTxv/
3 1H , Fa.,8, ¥, 2Fo, 5, 17X, F_,?2, Sx, =R, 2, ¢+ 1
4 F6,3, 85X, 2(5%, FR,?) )
TF (TMPAS LF. 0] GONTN 440
WRTTFE (4,403}
GO TN 440
ann AfGMYI = A1 - 1.
NIF = ARS{THFTHR - THFTATY
NEL = DTC

OB ERS




an)

an?

an3

004

ans

950

IF (DIF ,GY, PT) NEL = DIF =~ 2.0%P7Y

TF (THFETAT ,GT, THETHR) Nt = =NFL

NDYF = DEY

NDFL = DEL/ATLG

TURNTA = ARCOAS{CAXCNSINIF/ALGMYIY & € 7)

TF (TURNTO GTe (THPNT 4 1 .,F=-2) 1} G0 TN ant

TUHRANT = TIIRNY

TURND? = TURNIN

THETA = THFTAT

nNTN 904

FONTINUF

NLT = N, 1/7ALGMY

nooan?2 g o= 1,30

THFT = THETHR ~ ALGMY=%NEL

F = CI1%CNSHITHETY 4+ C2%STM{THFETY) 4+ 3 - CAXCAS(NFEL) - 7
G o= ALGMIX{CIXSIMATHETY) ~ CO2XCNS(THET )Y + CAXCTNINFL Y
15 (ABS(F) LT, n.,00N1) N TN an2

CHAN = D, a%xF /0

TF (CHAN GT, DLT) CHAN = DLUT

TF (CHAN 1T, =DLT) CHAN = N T

NFL = NFELL — CHAN

WRITE (6,436) F

65N TN 440

TURN] = APCAS{CI®CNSITHFETY + rOo=SIN{ITHETY + (?)

TURND = ARCNOS(CAXCOS(DELY + 7)Y

THETA = THURTY

TURNID = TURNI®RPTD

THRN?2D = THRMI?XPTD

TF {TURNID GF, TMAYXD ,0NR, TURND2D ,GF. TMAXD) MpNsS =
PTY = VOINYREAD?%({] ,/STNITURNL/2,) — 1.)/VH*x)

RT? = VO(M)*k¥{ ] /STN(THRN2/2,) = 1) /VYHRXD

FLEV] = ARSTINICOS{THETAIXSTIM(CN)I*RTN

ELEVHR = ARSINICNSITHETHR IXCTINICN) I %XRPTN

WRITE {6£,908) AILGMY, VH, VYA4PAIT), VY4GA(TY, YVATALT)Y,
1 TMAXDe TURNINGg RY1, TURNDD, PT?, FILEVYT, FLFV],
? FLEVHP

FORMAT ('0(*, F4,1, * FP REEORE THF  HR)--CDFENX R,00
1 *,7 ARRIVAL® ALY NWARLF TiHRN*® RENUTIREN TYRNS + v,
2 IRANTI® FLFY IN% NMEXT FIFVYXx FIEY TO Hox1/
3 1H § FO .5, 33X, 3F9,5, 1NX, FR,?2, R¥Y, 211r8,7,
4 Pe¥, FH,I, TEI), INX, 3IF],2 )

ALG = A1 GN

TF (ALG LLF, 1.00M) GO TN "3

Co6 = STN{CDNY %%x2

C7T = CNS{rNN)x%D

ALGMY = ALG - 1,

NTF = ARS{THFETAN - THEHRL)

NDEL = NDIF

IF (DTE 6T, PTY NFL = DIF = 2, N%PY

TF {(THFHRL .GT, THETAN) NEL = -NFL

NIF = DFL

144

1

v
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NDEL = DOFL/ALG
TURNIN = ARPCNS{CAXCNSINTIF/ALCMYY &+ 7)
TF {(TURNTN AT, (TUHRNN ¢+ 1.,F=3) } 6N TN as)
TUPAMY = THRNIN
THRNZ = TIHRNN
THETA = THETAN
O TN arg
QLS| THRNY = DY
MT = N, 1/ALNM
P asp J = 1,30
THEY = THEHR{ #+ AL GMI%NFL
F = CaxCNSITHET) & F4axSIN{THETY) + €5 - CAXCNAS(DFL)Y) - (7
G = ALGMLX {C4*COS(THET) — CRXSIN(THET) ) + CAXSTMINFL)
IF (ARS(F) LT, 0,00N01) G0 TN 983
CHAN = N, 9%E /G
TFE (CHAN . 0GT, NLTY FHAN = NOLT
IF (CHAN LY. =DLTY CHAN = -0t T
Q52 NEL = NDF|l - (CHAM
WRITF (6,436) F
GO TN 440
agy THRND ARCNSHCH6XCNS(NELY & C7)
TURN?3 ARCNASHICRXCAS{THET) 4+ CAXQINM{(THFTY + (5)
THETA THET
0K4 TURNDD TURN2ARTN
TURNAN = TURNERRTN
TMAXND = RTNX2 NXARSIN{L./{Y, + [VHD/VCIN)}Y#¥%D) )
TF (TURND?D ,GE, TMAXND NP, THPNZD GF, TMAXNNY  TMDNC=)
RT? = VYCINYREIR{ T /SIN{THRND /D, ) — 1,)/VHN**D

noon
"

RT3 = VOIN)x®D%(] [/STN{TURNI /D) = 1,3} /VHDKKD
FLVHRL = ARSTIN{COS{THEHRI yxSINICNN) %R TN
FLFYR = ARSIN(FNS{THFTA)RCTINICOAN) ¥XRTN

WRITE (5,955) ALCMY, VHN, yYaRe {1y, vxant (7)Y, vxarzi {1y,
1 TMAXNND, THRN2D, RTY?, THonaN, T3, FLVHRL , £} FV3,
2 Fievn
a55 FOARMAT (e, Fa,1, ¢ R AETER THF HRY—-SDEMNx D N 7%,

1 T oaYTE ALLDOWARLE TURNX REQHTIRED TURNS + PANTT v,
2 TELEY FROM  HR* NFYXYT TN LAST FLFVX FLEY NHTxd/
3 1H , FO,5, ¥, 2AFAQ, K5, 10X, FB.?24 BY,
4 2(FR, 2, ',', FH .2, Tx¥), 10X, 3FA,2> )

TE (TMPAS 1 F, N}y G TN 440

WRTTE (6,403)

50 T 440

* * ¥* * ¥ o’ * ¥ * * * * # *

THE RFMATNNER NF THFE MATN PROGRAM CALCULATFS THFE TURN
ANGLFS FNR ONE NR MNRE  FR  WITHNUT AN HR

419 TE {ALGNRF.?.0) cnoTn 430
WRTTE(He4?21) ToDATRITI VH, TMAXD ,RAINY

421 FORMAT{IH o////425H SINGLF RPEVNLUTION RETURN IX T2, 2V,
1 4{F12.3« 22X} }
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449

42?2

4213

474

394

521

429

1
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WRITE(6,297)
WRTTF(6:4625) VYLRA(T I VYLOALT) UWYALTZALT) VXARI (T,
VXLGL LYY, VX&TLAT)

THRNYT TS THF FIPST TURN AND TURN? TS THF SECANN TUPN TN

A SINGLF FULYI RFVNLUTION RETHRN,
PTY AND RT? ARF THFE RADIT OF CLNSEST APORAOACH CARPEC~
PONDING TO  TuRM] AND  THPN?  RESDFCTIVFRLY,

IF (LFHRILF, D) 6N TN 427

TE (LHRM ,FO, ?2) GO TN 44°

IF {(tHRM 6T, 2) 6N TN 44N

THARNY = ARCASICIXCOSITHETHR Y + CO2%XSIN(THETHR) + (13)
TiRND? = DY

THETAM = THFETHR

LHRM = LHRM + |

on TO 429

THRNY = 208

TURNY? = ARCOS{CRXCASITHEHRL Y + C4*STN{THFEHRL )} + (5)
THETAM = THEHRL

LHRM = LHAM 4+ 1

GO TN 429

TE (TURND .1 T. AINMY GO TO 423

THoNI=ATOM

TURN?=TURNN

THETAM=THETAN

60 Tn 420

TE(TURNT LT ANTMY 1N TN 424

THRNYI=TIRNT

THRNP=AOQTM

THETAM=THFTAY

N TN 429

TF(NIFLF.PTY THFETAM=THFTAS + DIF/?,
TE(NTF . GT.PTY THETAM=THETAS —(2,0%PT-NTF) /2,

NN 294 J=1,30

E={C1=-C8)XCNASITHETAMY 4+ (C2-C4YXASTNITHFETAMY + £33 - (K
G=(ra=C1YESIN{THETAM) + (C2-C4)XCNS{THETAM)
TE(ARSTIF) . LT,0.0001) /N TO 521

CHANI=N.8%F /G

TEICHANL GT,0.10) CHAN1I=0,.10

TRFICHANT LT .,—0.,10) CHANI==0,1N
THETAM=THETAM=HAN]

WRITE{A436) F

GN TA RIS

TURNI=ARCAS (CIACNSI{THETAM)Y &+ C2XSIN(THFETAMY) + 3)
TUPN?2=ARCNASICARXCNSI{THFTAM) + C4xSINITHFETAM) + H)
TURNID=TURNI%RTD

THRN2D=TURN?2%RTN

PTI=VOINIRYCINYR{Y /STNI{TURNL/? . 1=1, )/ (VH)YH)
RT?2=VC{NIRVE{ININR{ 1. /STN{THRN2/? (1 =1, ) 7/ {VH*VHY
FLEV=ARSINICAS{THFTAMIXSIN{CN) I %XRTN
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WRYTF {6,793}
WRITE(A,475)
WRITF{6,294)
WRITE(A:4251 FLFVIGFILEV,FLFVYN
TFOTURNYL LT, TMAXY ,AND THRND2 § T, TMAYY
WRITF({6.402)

THRNIN,RT ], THURNZN,RT

GN TN 440

LN TN 440

WRITE (A.421) AL G, T, DATF(T), VH, TMAXN, 2A(N)

FNARMAT (//// ¢ MOLTTIPLE (8, F3,1,%) PEFYNLUTINN RETIRMY,
1 4Xe 124 2%, 4F10.3)

WRITFE(A,297)

WRYITFE{As425) VUYLGRALTY VYAOALTY  WYLTALCT) VXART (T,
UXL4GLIT )Y VXaZU (1)

ALG - 1.0

)

ALLRM] =

TURNT, TURN? s THRN3 (RT1,RT2,RT2, APF THFE TUONS AMD CNRPFS~
PANNTNG RANTT NF CLNSFST APPRAACH FNP A MUY TIpg T
{MORF THAN NNF FR} RETION,

TFAKFE = 0

nEL. = DIF

IF (DIF.GT.PTY DFL = DIF = 2.0%PJ

[F (THETAT.ART.THETAN) NDFL = -DFL

NIF = NEL

NEL = NEL /ALG

TURNTN = APCNS(CAXCNSINTIF/ALGMLY + (7)

IE(TURNTIN AT, TURNT DR, THRNTD GT , THRNN) [N TN 48N
TURNI=TURNT

TURN?2=TIRNIN

THRNZI=TJRND

THFTAI=THETAY

THETA?2=THFTAN

G TN 488

TE(TURNT § T,TURNN AR THRNYT LT, TURNTINY) G0 TN 434
TURN]=THRNY

NN 43% J=1,30

THET THFTAT 4+ ALGM]®NEY

F CRRCAS(THETY &+ CA4XSTIN{THET) & €FK CAECNSINFL Yy - O 7
n ALGMIR{C4XONS{THET) CaxSIN{THFET)Y + CAXSININFL)
TEF(ARS{FY L T,0.,0001) GN TN 437

CHANI=0 B%F /6

TF{CHANT ,GT.0,10) CHANI=D.10

IFICHAMY LT, ~0,10V CHANI==N,10

NEL = DEL. - CHANI]

WRITFE(6,43A) F

FNARMAT (1H LJ1E6HTTERATINN FATLENGBX (4HI = (F12.6)
GN TN 440

TURN? = ARCOS{CAXCNSINEL } + €7}

TURNZ = ARCNS{CRXCNSITHETY + C4X2STNITHFT) ¢+ &)

THETAT=THFTAT
THETA? = THET
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419

486

12

1™
102

1n3

1009
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[FUIFAKF) 4RR,48RB,114

TRITURNN LT, TURNT NP TUPNN LT TURNTINY (N TO 442

THRN 3I=THRNN

NN 430 J=1,30

THET = THETAO - A{GMI%RNDEY

F o= CLACNSITHET) 4 C2%STNITHFT) + 03 - CAXCAS(NFL } - €7
G = ALGMIR({CIASTIN(THETY) -~ C2%CAS{THFET)) + CAXSTININFL )
IFIARS(F), LY . 0.,N00N01) 6N TN 496

CHANT =0, 8%F/G

TFICHANT GT,0,10) CHANI=N,1ID

TFICHANL L T.~-0.10) CHAN1I=-0,10

NFLL = NDEL - CHAN1

WRITF{6,426) F

$N TN 440

THRNY = ARCNS(C1IXCNSITHFETY + C2%SINITHET)Y + C32)
THRN? = ARCNS{CAXCNS(NEL Y + C7)
THFTAYl = THFT

THETA?=THETAN

TF{TIFAKE) 4R8,4R1,121
TRF{TURNT L T. TURNNY) 6N TOD 110

TFAKE=1

N TN 4373

TFAKE=)

6N TN 438

ITF (TURN? 1 F, TURMT) G0 TN 48R

THFETAL = THETAT « DEL /{2 .0%ALG)

GO T 101

IF (TURND?LELTURNAY £N TN 488

THFTA? = THETA? - DFL /{2,0%ALG)

DELTA = THFTA? - THFTA1L

ANFIL.TA = ABS(DEL TA)

SNFLTA = NFLTA/ANELTA

TF {ADFITALLE.PTY GO TN 1NnAQ

TF (ADFLTA LT (2,0%PTY)) O TN 103
DFLTA = DFLTA - 2,0D%PT%SNELTA

GO TN 10?2

NELTA = NELTA = 2 NXPTXRSNELTA

THFTA? = THFTAY1 4 NDF1 TA

NN &47 J=160

F1 = CARYCOSI{THFETA? - THETAII/ALGML) + 07 - CAx*
1 FNS{THETA?) — C&4*STN(THFTA?) - (5
F? = CHYXCNSI{THETA?-THETAIY/ALGMTY + C7 — CIXCNAS{THETAL)
1 - CO%¥SIN{THFTALY - 3

F = ARS{F1} + ABS({F2)

TE{F 1 T.0,0002) GN TN 497

Til = CE=STINI{THETA?-THETALY /AL GMIY /AL GM]
T22=-T11

T12=T722 + CBARSIN(TYHETA2} - C&xCOS{THETA2)
T21=T11 + CI%SINUTHETAL) - C2xCNS{THFTAL)
NETER=TLI%T22 —- T12%721}

CHANI=(N R/DETFRYX{T2D2%xF] - TI2%F2)
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L7

4RR

1

149

CHAM?= (0, B/NETFRI M TI1I%FD2-T21x%F 1)}

TE(CHANY ,OGT . 0,N8) CHANI=0 NS

TFICHAN? ,GT N, N8} CHAN?=N,NK

TF(CHANL L T ,~0.,NS ) CHAN]==N,N5

TFICHAN? LT, =N,N8) CHAND?==0,08

THETAY=THFTAY -CHANY

THETA?=THFTA?-(CHAND

WRITF{6,426) T

6N TN 440

THRNLI=ARCNS(CIXCNSITHETATY 4+ C?2%SIN{THFTAY) %+ ©3)

THRND? = ARFAS{CEXCNS{ITHETA?P-THETAT Y/ AIGMLY + 7)

THEN3I=ARCAS (CRXCNG{THETA?)Y + C4#STNITHETA?Y + €5)

TURNIN=TIRMNIARTHN

TURN?2ND=TPN2%XRTN

THRN3D=TIHRNRIZR TN

RT1=VCINYRVCIN)A( 1. /STNITHRNYI/2.) —1.) /7 0VHEYH)

RY2=VOINYRVCINY =LY /STNITHRND/2,) =7 .Y /{ VHEVH)

PY2a=vrIN)*VOINY X (1. /SINITURNZ/ D ) =1, /(VHRVH)

FLEVI=ARSINIANS{THETAL YIRS IN{NN)IXRTD

FI FV?=ARSTIN(CNS(THFETA2 } XS TN{CN) ) %RTD

WRITFE{6,297)

WRITFE((,425) TURNID,RTI,TURNIN,RT 2, THRNIN RTR

WRTITF(6,294)

WRITE(A,478) ELFVI,FLFEVI,,FLFV?,FLFVN

TECTHRNYL L T, TMAX AND, TUPND (LT TMAX ANMD, THRNZ 4T  THMAY Y
G0 TN 440

WRITF[/,4073)

aan CONTINNF

215

N T 1

Rig <STNP

FND
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SURRNUT INF LAMARRT (TJL, TJA, JJ)
THIS SURRODUTINF CALCULATES THF DI ANFTARY PNSTTTNNS
FROM THE ENCOUNTER DATFS, SO VFS LAMRFRT®S PRNALFM FNP
THF RFSULTING SPACFE TRTANGLE PRNORLEM, AND FANDNS 1P Ay
CALCULATING THF VRINCTITIFS ANMD SPEENS AT THF FNCNIIMTERS
AT FACH FNN OF A GIVFN TRAJFCTORY,
TMPORTANY PARAMFYFERS HFRFE ARF—-
GFN-~-LONGTITHINE OF THF NNODF
ANINC==RFI AT TVE TNCLINATIONS OF THE PLANFTARY NRAYTTS
ANOMY  ANOMY ==MF AN ANOMNLTES OF FNCUINTFREN DY ANFTS
TIL, TJA-=—JULTIAN DATE (MINIS 2440000) NF NEPARTYDPF
AND ARRIVAL {THF DEPARTIIRE NDATFE MAY RBRFE CHANGED
RY THF SURRNAUYTINFE TN THF CASF NF A HAL F DPFYNI NTTINON
RY THF SURRNIITINF TN THE CASF NF A HAp F
REVOLUTINN RETURNY
NTHFR PARAMETEPS NF [MPORTANCFE WTIL1 RE NDFSCRIREN [N
NTHFR CNMMENTS TN THF SURRNDTINF,

NIMENSTNM PER(9Y, A(9), F{O), TIP{Q), GFNP{Q), NDP(OD}Y,

1 DATFI {Q0), LEHR{QN), CTRP(ON), GLON(AN), NHIrKl(on),

? NHICK?2(aM o VX4ARLIA0D) (UXAGL{ON),VXLZL {ON) ,YXATI (ONY,
3 VY4RA{Q0),VY4GAL190) VY4 7ALA0D),VY4TA(ONY), VSPrlany,
4 VSPT{ANY,VSPR{9N), VSPTA(AN),VYSPHA(QN),VSPRA(DN)
COMMNON PY ,RTN,YR, PFR,ASFTIP,REDP, NP DATFI ., TP 1 FHR,

1 GLONGDHICK,DHITK 2,  VUXARL,VXAGBL ,YXATL ,VX4ATL,, VY4RA,

2 VY4GA,VY4LT A, VY4TA, VSPT VSO, YSPR,y VYSPTA,VSPGA,YSPRA,
3 NERR

NFRR=0

JIP1=44+1

NPX=NP{ J])

NPY=NP(JJP1)
CIRC = CIR{JID
IFINDX,FO. 1. ANDNPY FQ,2) 60 TN 42
TRINDX ,FQ.3, ANDNPY FR 1Y 6N TN 473
TEF{NDY FO,1,ANDNPY.FQ.2) 6N TN 40
IFINPXY ,FN, 2. ANDNPY . FQ.1) 6N TN 41
ITFINDXY EN,2 ANDNPY.FQ.3) 6N TN 44
TF (INPX FO, 3 ,AND, NPY ,FO. 2) GO TN 4%
5N TN 44

GFN = 76.,2197?

ANTNC = 1,9291

0 TN 99

GFN = 286,31972

ANINC = 1.9391

GN TN ag9

GEN = 49,24903

ANINC = 1,84909]

G0 TH 99

GFN = 229,24903

ANTNC = 1.8490]1

60 TN ag
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45

46
aaQ

49

181

GFEN = 23,0112

ANTMC = 3,204273

GnoYNoan

GFN = 102,013

ANTNC = 3,39423

nN TN Q99

ANTNEC = N0

CONTTNMEIE

¥ -3 b4 % X ¥ R 24 ¥¢ ¥ e ke

THE FIRST PARY NF THTS SURPNUTTINE NETERMINES THF
PNSITINNG NF THFE FNCOUNTFRED PLAMFETS,

ANPMY = (T YU = TJPINPX))*2 , %PT/PFRINPYX)

EX=ANOMY & 2 %FE{NDYX)ASTN{ANOMY ) +
1 1o 25%F INDPY } %% ST {2 xANAMY)

TE ({LFHR{JUY LF. DY GN TN 40

FX = FX ~ 4 NEF{NDPY)HSIN{ANAMYY -

TN = T = D, 0%FINPYYXRSIM{FX}XDER(NPX)/PT

NATEL T4 S) T Il

TYA = TJA - TN

TEY = TULA/VYR

RX={AINPY}#{) ,—F{NPX})xF{NDPY Y)Y}/ {1, + F{NDY) %NS (FY))
CX=GFP{NPYXY/RTD + ¥FX

GLON(JII=GX*RTN

VSXTL=SORT{ 2« /RY=-1,/A(NPX]})

VSPTLJdy=VSXTL
GOY=ATAN(FINPYXIASINIFY)XRY /LAINDY ) =AINDX)YRE(NDPY)XFEINDY ) ))
VEXRL=VYSXTE %xCNS{GGXY)Y

VSPG Y] =VeXGL

VSYR =VSXTLASTNIGAHRY )

VSPR( J SV =VSXRY{

ANOMY = (TJA — TUPINDPYI)}*D xPT/PER(NDPY)

FY=ANDMY + 2, %F{NDY)IXSTN{ANNMYY) 3
1 1 28%F (NPY ) RADXCTN{ 2 HANNOMY)

PY={A{NDY)}X{], = F{NPY)IRE{NDPYIIV/ (1 . 4$F(MDYIXCNSTIFY )Y
GY=GFP{NDY}/RTN 4+ FVY

GUON(JJI+1 I =GY*RTN

VSYTA=SNPT (2. /RY=-T1,/ATMNPYY)

VEPTALJJI4+1) = VSYTA

AGY=ATAN(F{NPY}XSIN(FYI*RY/ (AINPV)-AINDY)XF {NDYIXFINDPY) )
VSYGHA=VSYTAXRCNS(GGY)

VSPOALJJ+T) = VSYGA

VSYRA=VYSYTARSTN{ANOY Y

VSPRA(IJ+1Y = VSYRA

SINTH=STNIGY~GX)

COSTH=CNS{GY-GXY)

ITF [ABSISINTHY LE, 1.,E=-4) nn vn 1000
C=SORT{RYXXR Y 4+RY KR Y-D  K*RYXRYRCNCTHY

S={RY+RY+Y/ D,

BEM=ARCNS{{? . %C=S1/S}
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26
27

16

14

17
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R1I  FOUALS =1 TF THFE TRANSFER ANGLF MODULN 1360
NDEGREFS TS LESS THAN 180 DNDFGRFFS, RY1  FQUALS
+1 NYHFREISE,

TMM  FQUAL S THE MINIMUM ENERRY TIME NF FLTIGHT FNR 7€0N
CIRCUTTS,

TM  FDUALS THI MINTMUM ENFRGY TIME NF FLTIGHT FNR “rT1pew
CIRCUTTS,

R1=+1,

[FISTINYH)Y 27,27,26

Rl==1,

NTFSY = N

FF (CIRC,LT,10.0) GO TO 16

CIRC = CIRC - 10,0

NTFEST = 1

TF (CIRC,LT.10,.0) GO TN 16

cieC = CIrC - 10.0

NTESYT = O

IF (CIRC.IT.10.0) Gn 7O 16

CIReC = CIRT -~ 10,0

MTEST = 13

TF (CIRC,L T, 10.0) GO TN 14

CYRPC = CIPC - 10,0

NTESY = &4

IF (CIRC A T,10,0Y GO TN 16

CIRC = CIRC - 10.0

NTFST = §

SNSR23 = SORTU({S%*%3)/R,)

TMM = [SNSR23/2,)1%(1, +RI#(RFM-STN(BEM))/PT)
TM = TMM 4+ (CTRCXSOSR23

TM] = SNSA23 + TM

TM1 FQUALS THFE MINIMUM FNFRAY TTIMF NF FL IGHT £0N
CIRC+Y1 CIRCUTITS
SWITCH FNP SYMMETRIC TRANSFFR NP INTFRP{ ANFETARY TRANSFEDR

IF(NPX.EQ.NPY) GO TN 601
# % * * * * * * # # %*

THYS PART NF THE SURPNUTINE SOUVYFS L AMRFRTYS DPRNRBI FM
FOR AN TNTFRPI ANFTARY TRANSFFER,

832"’1.

IF {TM GF, TFY) BR2 = %1
P TM=1

ANLD=S/1.9

IF (NTFST.FO.0) GO TN 17
R3 = *‘1-

AMLD = PX + RY

AA = AOLD
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2 NA

aInzy

3INR

3on

601

18

A5

153

R = (1. - ARY/?, 4+ CIRC

FOSAL=1.~S/AA

TE{1+CNSAL) 210,307,307

AA={S+? ., %A0LNY} /4,

6N TN 306

FNSRF=1,-(S=CY/AA

AL=ARCNSICNSALY

RE=ARCOSICNSRE]Y

STNAL=STN{AL)

STNRE=SIN{RF}

DRP=SORT( AA%R%3)

TOAFA=PRRX{R24+{RAX{AL ~STMAL J+RIX{RF-SIMAF) )/ (D =DT))

1.TM=1 TM4]

TF (LIM - 30) 308,208,10n01

TEST=ARS(TNFA-TFY -0, 00010

TF(SINAL L TaNNNAD,NR,SINRE 1 T, Nn,NN32Y 1m0 TN A1N

IFITEST)Y A10,300, 200

ANEL D=AA

AA=AAR {1 = {TOFA=TFY)} F{]  SXTNFA=PRRX{RI%(] ,~CNSAYL Jke®?
JSINAL + R1%x(1, = COSRFEYx%D/STNREY) /{2, xnT) ) )

IFLAR) 310,306,306

CONTINUF

IF {CIRC+T) 1S ENHAL TN THE NUMRER NF Finn L CTRCTTS
OF THFE PLANFT, THEN TFP ENUALS THE Py AMET TI#MF
FLIGHT FOP ZERD CTRCUTITS,

TF (NTFST.FN.0) GN TN 318

NS = ]
IF (NTEST.FQ.2)Y G0N TN 19
n3Y = &1,

AA = RYX 4 RY
TF (NTEST,.FN.3) AA=S/1.95
TE (NTESY.LT.4) G0 TO AT

R3 = =1,

CIRC = CIRC -~ 1.

AA = S/1.9

GO TN 67

TFP = TFY =SQRTIA{NPY ) %%V %{CTC + 1)

* * ve % # %* * 3 B 2 ¥e

THTIS PARY 0OF THF SURARNNTINE SN VES |AMRERTIS PRNORIEM
FAR A SYMMFTRIC RETIHRN,

KNNT=80

T (TFP,LT.TMM) 6O TO A5
AA=1,25

R3=%1,

MS=1

N TN 67

TFITFY LT, TMI) G TN A4
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19 AA = §/1.9
R]z"l Y
ANS=1
6N TN A7
66 AA=1,25
R3=+1,
NS=0
67 CNSAL = 1. - S/AA
fNSAF = 1. — (S=C}/AA
Al = ARCNS({CNSAL)
RF = ARCNSI{CNSAF)
STNAY =STN(AL)
SINRF=SIN(RF)
TFISINALI T,0.0N32,0R,SINRE 1 T,N,0032) G0N TN 415
T4 = SORT{AA%RXIY&({ (3, % 2, %CTRCYI*PT + RAIX(AL - PV -
] STNAL Y &+ BI%IRF — STMAFY ) /1(2.%DPT)
TE(ARS(TREY=T4}-0,00N10N) QR,08,7
7 SINPF= {1, B5%T4/AAY — AAR((RI%{],~-CNSARF)®X?, /STMRF)} 4
1 (R3%{ ], -COSAL VXX /SINALY Y/ (2.,%PT)
AA=AA+ [ TEY-T4) /S| NDE
TF{AA-S/?,) RO,RO,15
29 AA=(AA-(TFVY-T4)/SLOPE 4+ S/2,)/2,
15 “ANT=KNOANT-1
TFIKONT,FQ.0) 6N TN 1003
6N TN A7
ap TF{NS,FR, 1) G0 TN A15
IF{ARSTAA=AINPXY)=0,0NNT1) 9,0,A15
9 AA=S/1,990
KONT=30
NS = 1
60 TN A7
618 COMTINUE
610 CONTINUE
A4 = AR
»* e * * % k-3 * * 3 ¥¢ g

THF REMATNTNG PART NF THIS SURPNAUYTINE NETERMINES THF
MECESSARY VFELOCTITIES CONNECTEN WITH THE £NNS NOF
THE YRAJFOTORY,

DHICK({JJY=A4

Pozs HALK]S-RYXY ([ S-RY ) xSTA{{AL-BIHRIXBE) /D, ) *
1 SYN{(AL-BRYXR2IXBEY) /D )/ k%D

IF (P4 LT, 1.F-4Y GN T 1007

F4=SQRT(]1.~P4/A4)

DHICK2(J.3)=F4 ,
VSGRL=SORTIPLYIR{{ 1, /RX=1./7P4¥%CNSTHE(1./P4=7 ,/RYY)/STNTH
VS4GL=SORT{P4Y/RY
VS4RA=SORT(PLIXI( ), /P4=] JRYIXCOSTHL {1, /RY=1,/P4&Y)/STNTH
VSLGA=SORY (P&} /RY

VX4RL (1) =VS4nt =VSXRIL
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VY4RALJI+1I=VS4RA-VSYRA
TFINPXFQ.NPY) GO TN 60K
UXLTLLIIV=STNIANTNC/RTN) 2STN(GY=GFRN/RTN) %Y SAGHE /STMTH
DNGI=VSAGL*YSAn L -VX4TLUJIVRVXATE (JJ)
[FINNGTY 1000,522,52722
8§22 YX4GL{JJY=SQRTINNGTY-VSXGL
VYSGZALAJ+ 1) =SINCANTINC/RTDY X STN{GX =GFN/RPTNIXYSAGA/S TMTH
NNG2=VSAGAXYSAGA-VYYATAT S I+1VXVYYATAL IS+ 1)
TFINNG2Y 1000,533,5373
823 YYAGA{ JI+1)=SORTINNG? }-VSYNA
Gn TN 712
605 VX471 {JJ)Y=n,0
VY4&7A(IJ+1)=0,0
UXAGL L JJY=VS4GL-Y SXAL
VYLGALJ 4T )=VS4GA-YSYGA
T12 VUXATLUIII=SORTIVYARL (JJYHYXARL (JJ)+VXAnL L J)XUXAGLJ )

1 + UXGZL () xyXa7L L)Y )
VYL4TA{AJ+1)=SORTIVYARAT J I+ 1Y RUYLARAL J 41 Y +VYYAQAL J1#+1)
1 HYYAGAT JI41) 4 UYATA LIS+ RYYLTALJ+1Y) )

CLONCJYY = AMODC CLONMISIY, 360,.)

CLONTJS + 1) = AaMODL GLONCGY 4+ 1), 2360.)

RETHRN
100N WRITE(AL101NY TUL,TIALGENONTIN (G LANEJI41)
1010 FORMAT{1H L,24HTHETA 1S A MULTIPLF NF 180 NEGRFFES,INYX,

1 LIF12,6, SX) ) '

GD TO 106
1001 WRITE{[ALIN02) TJIL,TUALGLONTI G, ALONTJI+T1), AALANLD,

1 RY¥, RY, NPX, NPV
1002 FNARMAT(1H ,29HINTERPLANFTARY LAMAFRT FATL FN,1NX,

1 4(F12.6¢ SXY/ YIH , &IF1D2,hs RXY, 12, 5Y, 12)

GN TN 106
1003 WRITFU6.1004) TJIL qTIALGINONTIIIY(GLONII I 413 AR RV  ND Y NOY
1004 FNRMAT{1H (24HSYMMETRIC |LAMPFRY FATLFN,INX,4(F12,6,5%)/

1 TH . 2(F12,6, B¥Y), 12, 8%, 1?2}

GN TN 106
1007 WRITE (6,1008Y TJl, TJA, GULON{I Y, GLOM{JI+1Y,AA, AN D, P4
1008 FORMAT (¢ PARAMFTER TNN CMALYL Y, 4F12,4, 3F15,6)
106 NERR=}
a0 CNANTINUF

RETHAN

FND
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APPENRDIX B

MEAN ANOMOLY CALCULATION FOR A

HALF REVOLUTION RETURN

In order to facilitate calculations for a half revolu-
tion return, it is desired to find a series solution for
the time or mean anomoly as a function of the true anomoly
and the eccentricity.

Kepler's equation is given by

M = 2q (t—’t)‘/% = E - e sinE (B-1)
a

where M is the mean anomoly, E is the eccentric anomoly,
e is the eccentricity, a is the semimajor axis, AL is the
constant of gravitation, T is the time of perhelion passage,
and t is the time.

Now, in order to create a power series for M in terms
of true anomoly f and in powers of e, one needs to relate £

and E such as by the expression from page 39 of Battin6,

£ 1
tan 3 = == tan 3 (B=2)
Next, one needs to use this relation and Kepler's
equation to obtain,

M| = £ (B-3)
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oM . - _
3o 0e0 2 sin £ | (B=4)
2 21; = % sin 2f (B-5)
de e=0
a7y .

3 = - 2 sin 3f (B-6)
oe e=0

Then the general Taylor series for the mean anomoly as a
function of eccentricity e and true anomoly f is given to
the third power of e by,

3

M= f - 2e¢ gsin £ + g e2 sin 2f = % e” s8in 3f + ...

(B-7)

In the case of m FR's and one HR, we would like to
know what happens to the time or mean anomoly at the end of
the series of FR and HR as a function of the time at the
beginning of the series. Hence, we let,

f=f +2nm+m ' (B-8)

where it is assumed that one already knows fo as a function
of the initial time. If one then substitutes this expression
for f into Equation (B-7), one obtains an expression for M in
vterms of fo’ m, and e. In addition, the expression for Mo
can be obtained by substituting f  into Equation (B-7) in
place of the f already there. The result is an expreésion
for Mo in terms of fo and e. This last expression for MO
can then be used to form an expression for M in terms of MO,
e, and sines of multiples of fd as

9

M = Mo 29 M + ¢ + 4 e sin fo

3

e

WY+

sin Bfo + oo (B=-9)
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One can also obtain another expression for the mean
anomoly M after a series of FR and one HR through the use of
an incorrect initial expression for M and for f. Battin6 on
page 55 gives a series expression for f in terms of M and e

to fourth order in e as,

f =M+ (2e - % ea) sin M + (2 32 - %& e4) sin 2M
+ 13 e sin 3M + %%? e sin 4M (B-10)

If one uses this expression to obtain an incorrect value for

the true anomoly f* at the end of the series of FR and HR by

using,
M* = M, o+ 2 M + 7 (B-11)
then one has,
f*=M +2“m+'n"(2e--e3)5inmo
+(2 2 - 1k &) sin 2w - 13 &7 sin 3M

——é 4 sin 4M

=f, + 2qm + 5 - 2 (2e - % e3) sin Mj
- 12 &7 sin 3M, (B-12)
Hence, one can write the desired correct value for the true

anomoly as,

f

fo + 2 M + 5

£* + (Y4e - % e3) sin Mo + %g e3 sin BMO
1

+ - (4o - & e2) sin M* =+ %% e sin 3M* (B-13)

One can also write from Equations (B-%) and (B-11),
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2.3
M= M* ¢+ 4e s8in fo + 3 e” 8in 3fo + s

- M* - 4e sinf-§e5 sin 3f - ... (B-14)

The above relations are useful in calculating dates and
true anomolies for half revolution returns which are associ-

ated with a series of full revolution returns.
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APPENDIX C

THE NUMBER OF COMBINATIONS AVAILABLE

In order to know if all possible combinations of r of
the n different types of direct return orbits have been
counted, one would like to know the answer to the auxiliary
problem of determining the number of possible combinations
of r elements, each of which can be one of n possible things.
This information is important as a check that one has all of
the desired combinations in Appendix D. The list of combina-
tions in Appendix D has been created without regard for the
order of the elements in each combination although the order
does matter in a periodic orbit. The auxiliary problem
may be stated as follows:

It is desired to deterﬁine the number of combina-
tions or r elements from a population n with replacement
and without regard for order.

In the specific case of the direct return orbits, n will be

equal to four and r will be any number up to about 6.

An equivalent problem is determining the number of ways that

one can choose n nonnegative integers, T1s Tpseee Tpy such that,
n
i=1

In order to obtain the solution of this problem, one
must first note that if the numbers, T1s Toy eee Ty 7 have
already been chosen and if i is less than n, then the number

i-1
ry can be any integer between O and (r - Z%-rj) inclusive.
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i-1

Hence, there are (r + 1 - > rj) ways to choose the i
J=1

number T . If, however, i is equal to n, then one must have,

th

n-1
r =r - ry (C-2)
i=
in order to satisfy Equation (C-1); and there is only one
way to choose T,
Hence, if the numbers, Tyy Tpy eee Tp 5y have already

been chosen, then the number T, can be chosen in

n-2
(r +1 - jg; rj) different ways. The choice of r _, then
determines the choice of T This choice of Tho1 will result

in a different combination of the n ri's for each different
combination of Tis Tpy eoe T oo One can then surmise that
the desired number Ng of possible combinations meeting the
above conditions is given by the sum of the number of all

possible values for r

n-1"*
n=4 n-

r r r—rl 'gil J %:_-:l n-2
anr;—::o rzO.”r =0 r =O(r+l-=zlra)
1 2 n-3" n-2 J

o . 1- .
- T :;;ra T+ ’=lrJ
- i SR8 S5k (C-3)
rl=0 r2=0 rn_B-O k=1

Note that this expression for the value of Nﬁ can be put

into the following form:
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n-4
= 1";i
-7 =] =3
Ng = 2 l % 6 0 t [(I‘ + l fund I'j)
I‘l=O 1‘2-0 I‘n_5=O =
b
r- =lrJ
+ %E; k]
k=
n-4
r+l- r
iy =T =] J
= [ Zl e 6 o j k]
rl=g r2=0 k=1

_ r-r;-1 r—EEfrj

v =
+ [ coe k]
rl=O r2=0 k=1 -
- NS, o+ N (c-4)

Note that the first term in the final expression is the value
of Ni for n one less than the present value and that the
second term in the final expression is the value of Ng for

r one less than the present value; a recursion relation for
Ng has been developed. One can then set up a table for

the value of Ni as a function of the values of n and r such
that each number or value of Ng in the body of the table is
equal to the sum of the number immediately to the left of it
and the number immediately above it. Such a table is

Table (C-1). From an examination of this table and by
remembering how this table was formed, note that these

numbers are those of Pascal's triangle; the numbers are the
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binomial coefficients. Then, the number of combinations of
T elements taken from a population n with replacement and

without regard for order can be given by,

r r+n-1 r+n-1)!
Ny = ( n-1 ) = (o=1)T7T (C-5)

n 1 2 3 4 5 6 7 8 9

H

5 4 > 6 7 8 9
6 10 15 21 28 36
10 {20 55 |56 |84
15 35 70  |126
21 56 [126 |252
28 |84 1210 462
36 |120 |330 792
45 1165 (495 1287

o] ENE Fo N (N o) RNVE IERY e
(= = = T Py ey ey jran
NN ENE

Table C-1. The number of combinations Ng of r elements from
a population n with replacement and without regard for
order.
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APPENDIX D

COMBINATIONS OF DIRKCT RETURNS AT EARTH

This appendix lists all of the reasonable combinations
of direct return trajectories which depart from and return
to Barth and which traverse the Sun the same number of times
as the Barth. The different combinations are listed in order
of increasing time required for their completion. The first
part discusses how this list was obtained.

The first step of the procedure is the writing down of
all of the possible combinations of direct returns taken r
at a time. 1r is successively set equal to 1, 2, 3, 4, 5,
and 6. 6 is chosen as the upper limit so that one is sure
that all of the desired combinations which last up to 3.2
years are included. The different direct returns which are
taken to form these combinations are the ones indicated by
the symbols HR, FR, S1SR, and L1SR. Symmetric returns of
longer duration are not included, because the addition of
more types of direct returns greatly increases the number of
combinations possible and because symmetric returns of the
type S2SR, for instance, can simply be considered a modi-
fication of the combination (FR)(S1SR), having a duration of

only a few days longer. The number of combinations in each
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then known for the different combinations of direct returns.
Next, the different combinations of direct returns are
placed in order of increasing duration so that the user of the
list can easily look within a range of time for a combination
which lasts lasts approximately some desired length of time.
One can now eliminate from the list those combinations which
last longer than the desired time--3.2 years in this case.
Finally, different combinations, which are based on com-
binations already in the list, are added. The reader will
remember that, in the creation of the list up to this point,
symmetric returns which last longer than two years have been
excluded. Combinations which include long symmetric returns of
this type are now added to the list. These additional combi-
nations are formed by substituting symmetric returns which last
more than two years for those comhinations of direct returns
which include one or more full revolution returns and a symmet-
ric return. They supply series which reguire slightly more
time to complete than the series from which they are formed.
The added combinations are basically small variations on the
original combinations. A reason for delaying the inclusion of
combinations with long symmetric returns (such as 82SR or L3SR)
is that the delay makes the earlier list formation easier. If
the list contains a series of direct returns which includes a
subcombination of the form, (2FR)(S1SR), then two additional
series of direct returns can be formed which include the sub-

combinations of (FR)(S2SR) and (S3SR) respectively. The two

complete than does the original combination. In the process
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of adding these additional combinations, one must
maintain the order of the list so that each series in the
list requires a nominally greater length of time than the
preceding series of direct returns. In creating these
additional series of direct returns, one must also take
care not to include impossible combinations such as
(82SR)(S3SR). Many series of direct returns were added to
‘the list in this fashion.

A list of the different direct returns used and the

times used for them follows:

direct return duration in days
HR--half revolution return 182.6
FR—-full revolution return _ 365.3

S1SR--symmetric return less than 1.41 yr. 478

L1SR--symmetric return greater than 1.41 yr. 550

S2SR~-symmetric return less than 2.46 yr. 858
L2SR--sym. return greater than 2.46 yr. 930
S3SR--sym. return less than 3.46 yr. 1229
L33R--sym. return greater than 3%.46 yr. 1301
S4SR--sym. return less than 4.47 yr. 1598
I4SR--sym. return greater than 4.47 yr. 1670
S58R--sym. return less than 5.48 yr. 1965
L5SR--sym. return greater than 5.48 yr. 2037

The third, fourth, and fifth columns of the table give
times whieh are useful for matching a combination of direct
returns with round trips to Mars and back. If one has a

series of direct returns situated in the center of a time
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interval determined by one or more synodic periods, then the
times which describe the distances between the ends of the
interval of one or more synodic periods and the ends of the
interval determined by the series of direct returns. will be
equal. In other words, there are two intervals. The larger
interval is a few synodic periods in length, and the ends of
it are given by times of opposition. The smaller interval
has a length determined by a series of direct returns. The
smaller interval is centered within the larger interval so
that the time differences between the beginnings of both
intervals and between the ends of both intervals are equal.
This time between the corresponding ends of the two intervals
gives time from opposition, since the ends of the larger
interval correspond to opposition times. These times from
opposition are extremely useful for matching a series of
direct returns with the ends of round trips to another
planet. If n is the number of synodic periods, TS is the
length of a synodic period, and Td is the length of time
spent on the series of direct returns, then the time T from
opposition is given by,

T=¥ (T, -T (D-1)

a)
The purpose here is to go from Earth to Mars; hence, one
takes TS = 779.2 days and n egual to 1, 2, and %3, to obtain
columns three, four, and five,.respectively, in the table.
One must now understand the restrictions of the last

column of the table. This column contains an attempt to
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declare any possible restrictions which may be placed on a
round trip which is to be patched ffom a given series of
direct returns. Restrictions are based on speed such that
certain turn angles can be accomplished at Earth and on
direction such that the hyperbolic excess velocity at the
end of the round trip should be approximately in & certain
‘direction. Beyond this, if there is no letter in the last
column indicating a restriction, then no difficulty will
arise 1if the speed is sufficiently slow (0.5% EMOS) so that
about a 450 turn can be accomplished at Farth without hitting
Earth. The restrictions corresponding to the letters used
are given below.. The R,G,Z coordinate system referred to
for the hyperbolic excess velocity components is explained
in Chapter 3%, Figure 3%-la, and in the list of symbols. To
allow as few restrictions as possible, the order of the
individual direct returns in a series may be changed as
needed. The interplanetary trajectory leg at one end of

the series of difect returns is assumed to be the reciprocal

of the leg at the other end. The list of restricticns

follows:
letter corresponding restriction
A Arrival velocity vector at the beginning of
the series of direct returns should have a
positive R component (and the departure veloc-
ity vector should have a negative R component) .
B Arrival velocity vector at the beginning of

the series of direct returns should have a
negative R component (and the departure veloc-
ity vector should have a positive R component).




170

C Arrival (and departure) speed should be slow
enough so that the vehicle can perform about
a 607 turn at Barth without hitting the
planet (0.27 BMOS).

D Arrival (and departure) speed should be slow
enou%h so that the vehicle can perform about
a 90" turn at Barth without hitting it
(0.17 EMCS).

E Arrival (and departure) hyperbolic excess
velocity should be mostly in either the posi-
tive or the negative G direcgion and small

enough so that at least a 90~ turn can be
made at Earth without hitting it.

Ag is explained above, the following table is designed
for series of direct returns at Earth and round trips to
Mars and back. However, with a little bit of scaling, the
table can be useful for direct returns at any other planet
and for transfers between that planet and any other in the
search for periodic orbits. The length of the series of
direct returns must be scaled with the length of the year
for the planet in question and columns three, four, and five
must be recomputed using the new length for the series of
direct returns and the appropriate value for the synodic
period of the two planets in question. The restrictions
would mean the same thing as far as the approximate required

turns are concerned, but the speeds would be different.




direct returns in

the series

(1)

(HR)

(FR)

(S1SR)

(HR) (FR)
(L1SR)

(HR) (S818R)
(2FR)
(HR)(L1SR)
(FR) (B1SR)
(S28R)

(HR) (2FR)
(FR)(L1SR)
(L2SR)
(HR) (FR) (S1SR)
(HR) (S2SR)
(8181)(L1SR)
(3FR)

(4R ) (FR)(L1SR)
(HR) (L2SR)
(HR) (2S15R)
(2FR)(S1SR)
(HR) (S18R)(L1SR)
(FR) (S23R)
(S35R)

(HR) (3FR)
(2FR)(L1SR)
(HR) (2L1SR)
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time in times from re-
days for opposition stric-
the series 1 2 3 tions
synodic synodic synodic
period periods periods
(2) (2) (4) (57 (6)
18% 298 688 1077 D
365 207 597 986
4778 151 540 930 A
548 116 505 895 D
550 115 504 894 B
661 59 445 838 D&A
731 24 414 804
753 23 413 802  D&B
843 358 4 A
&858 350 740 A
913 323 712
915 322 711 B
930 314 704 B
1026 266 656 D
1041 259 648 D
1028 265 655 B
1096 251 621
1098 230 620 D
11153 223 612 D&B
1139 210 599 D&A
1209 175 565 A
1211 174 563 D
1223 168 557 A
1229 165 554 A
1278 140 530
1281 139 529  BorD
128% 138 527  D&B




(FR)(L2SR)
(L33R)

(FR) (2S18R)
(HR)(2FR) (S18R)
(FR) (S1SR) (IL1SR)
(HR)(FR)(S28R)
(ER)(838R)

(4FR)

(HR) (2FR) (L1SR)
(FR)(PL18R)
(H5R) (FR) (L2SR)
(HR)(L3SR)

(HR) (FR) (2S1SR)
(2815R)(L1SR)
(HR)(S1SR)(S2SR)
(3FR) (S1SR)

(HR)(FR)(S1SR)(L1SR)

(S18R)(2L1SR)
(2FR) (S2SR)
(HR)(S28R)(L1SR)
(HR)(S1SR)(L2SR)
(FR) (S3SR)

(SUSR)

(HR) (4FR)

(3FR) (L1SR)

(HR) (FR) (2L1SR)
(2FR) (L2SR)

(HR) (L2SR) (L1SR)
(FR) (L3SR)

(L4SR)

(2FR) (2S18R)

(HR) (281Sk) (L1SR)
(FR)(S1SR)(S2SR)
(HR) (3FR)(S18R)
(2FR) (S1SR)(L1SR)
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1295
1301
1321
13291
1393
1406
1412
1461
1463
1465
1478
1484
1504
1506
1519
1574
1576
1578
1589
1591
1591
1594
1598
le44
1646
1648
1661l
1663
1666
1670

1689
1701
1756
1759

132
129
119
84
83
76
73
49
48
47
40
37
27
26
20

521
518
508
4973
472
466
463
428
437
436
430
427
417
416
409
382
381
%80
375
373
573
372
370
47
346
545
539
537
326
534
326
324
318
291
290

D&B
BorD
D&B

A&C
D&A
D&A
AorD




(HR) (S18R)(2L1SR)
(HR) (2PR)(8253R)
(FPR)(S2SR)(L1SR)
(FR) (818R)(L23R)
(HR)(IF'R) (S3SR)

(HR) (845R)

(5FR)

(HR) (3FR)(L1SR)
(2FR)(2L1SR)

(HR) (2FR)(L2SR)
(FR)(L1SR)(L2SR)
(HR) (FR) (L3SR)

(HR) (L43R)

(HR) (2FR)(2S1SR)
(FR)(28138R)(L1SR)
(BR) (Fr)(8S1SR)(S28SR)
(S18R)(S2SR) (L1SR)
(2818R) (L2SR)
(HR)(S1SR)(335R)
(BR)(2823R)

(4FR) (S18R)
(HR)(2FR)(S1SR)(L1SR)
(3FR)(S2SR)
(HR)(FR)(S23R)(L1SR)
(HR)(®R)(S12R)(L2SR)
(2FR) (S3SR)

(HR ) (83SR) (L1SR)
(HR)(818R)(L3SR)
(FR)(S43R)

(S5SR)

(HR) (S2SR) (L2SR)
(HR)(FR)(3818R)
(HR)(5FR)

(4FR) (L1SR)
(HR)(2FR)(2L1SR)
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1761
1771
1773
1773
1777
1781
1826
1828
1831
1843
1845
1849
1853
1869
1871
1884
1886
1886
1890
1899
1939
1941
1954
1956
1956
1960
1962
1962
1963
1965
1971
1082
2009
2011
2013

288
283
282
282
280
278
256
255
254
247
246
o4l
42
234
253
227
226
226
224
219
199
198
192
191
191
189
188
188
187
186
183
178
164
163
162

o = P Q Q

D&A

BorC
BorD




(3FR) (L2SR)

(HR) (Fr)(L1SR) (L28R)
(2FR)(L%SR)

(rtR) (L1SE)(L3SR)
(FR)(L4SR)

(L5Sik)

(He ) (2L2B3RJ
(3Fr)(2313R)
(4R)(IFPR)(2318R)(L1SR)
(2315K)(2L1SR)
(2FR)(S18R)(328R)
(Hr)(S13R)(325R)(1L1SR)
(HR) (2513R)(L2SR)
(FR)(818&)(S3SR)
(Fr)(2823R)

(HR)(4FR) (S18R)
(3rR)(81SR)(L13R)
(HR)(#5)(S18R) (2L18SR)
(Hr) (SFR)(8258)
(2FR)(828R)(L1SR)
(2PR)(S18S1k)(L2SR)
(HR) (523R) (2L1SR)
(HR) (S18R)(L18R) (L23r)
(Ar)(2Fr) (8351 )

(') (S3SR)(L1SR)
(FR)(B158R)(L33R)
(HR)(FR) (S438R)
(Hx ) (S58R)

(FR) (828R (L2SR)
(2FR) (3818R)
(HR)(3813R) (L1SR)
(6f8)

(Bea) (4FR)(L1ISR)

(3FR) (2L1SR)

(HR) (FR) (3L1SR)

2026
2028
20%2
2054
2035
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2037

2043
2052
2054
2056
2067
2069
20609
2072
2081
2122
2124
2126
2156
21%9
2139
2141
2141
142
21 44
2144
2146
2148
2153
2165
21€7
2192

2104 -

2196
2198



(HR)(3FR)(LA2SR)
(2FK)(L1SR) (L2SR)

(4 )(2FR)(L3SR)
(#r)(L1SR)(L33R)
(ar)(¢r)(L43R)
(UR)(L5SR)
(FR)(2L2SR)

() (B3¥R) (23183R)
(2FR)(23153K)(L1BR)
(6Rr)(251818) (2L18KR)
(Ex)(PFPR)(S18R)(S28R)
(#Rr)(S18R)(828kK) (L13R)
(FR) (2315%)(L2SR)
(hr)(Fi) (S1SR)(S38KR)
(815Rr)(835k)(L1SR)
(2815r) (L3SR)
(HR)(813Rk)(S48R)
(4R)(FRr)(2523R
(ha)(8258R)(S3SR)
(5FPR)(S18R)
(HR)(3FR)(S15R)(L13R)
(2FR)(S18R)(2L1SR)
(4FR)(B2SR)
(ar)(2FR)(323)(L1SR)
(Hix)(28R) (8185 ) (Losk
(FR)(S28R)(2L1SR)
(FR)(S18R)(L15kK) (L2SR)
(3FR)(838R)

(ER) (FR) (B358R)(L2SR)
(ER)(#R)(S1SR)(L3SR)
(2FR) (S48k)

(833R) (2L13SR)

(518R) (L15R) (L3SR)
(BR) (84SR) (L18R)

(Ilir) (515R) (L4SR)
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group of direct returns taken r at a time must be egual to
the corresponding number in Table C-1 in the column n = 4.

The next step is to eliminate all combinations which
contain two or more half revolution returns (2HR). In these
combinations of direct returns, each pair of half revolution
returns may be replaced by cne full revolution return with-
out changing the length of time for the combination and yet
allowing greater flexibility in the turn angles at the planet.

The third step is the elimination of combinations which
are, in general, impossible for any finite hyperbolic excess
speed. For instance, the combination of two short symmetric
returns ((281SKR) or (2L1SR) or (3S1ER) etc.) cannot be
expected to work in any realistic case because the turn angle
between the two symmetric returns is very close to 180°.
Hence, such combinations are to be eliminated from the list.

Fourthly, times must be assigned to the different com-
binations of direct returns. The times for the half revolu-
tion return and the full revolution return are, quite
obviously, one half year and one year respectively. The
times for the symmetric returns are a problem, because the
length of time for a symmetric return varies with the hyper-
bolic excess speed. The length of time for a symmetric return
is arbitrarily assigned on the basis of assuming the
hyperbolic excess speed to be equal to 0.3 Barth Mean Orbi-
tal Speed units (EMCS). With the times selected for the

individual direct return trajectory segments, times are
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APPENDIX E

CIRCULAR COPLANAR EARTH-MARS PERIODIC ORBITS

This appendix consists of a list of the basic arrange-
ments for all of the Earth-Mars periodic orbits which work
or almost work in the circular coplanar case. The solar
system model taken for this purpose is a circular
coplanar one with correct values for semimajor axis and per-
iod (solar system Model I.B.). One could, in a few cases,
create slightly different periodic orbits by changing slightly
the order of some of the direct return orbits; however, in
these cases, the slightly different periodic orbit would not
vary in encounter dates from the original one. There may be
some other working circular coplanar periodic orbits which
are basically different and which are not included in the
list; but the author feels that it is unlikely that he missed
any reasonable ones in the regions which were searched.

The numbering system for the periodic orbits is an
attempt to be logical. The "M" in each case stands for the
fact that the periodic orbit goes to Mars as well as to Earth.
The second digit stands for the number of synodic periods of
Barth and Mars required for the circular coplanar periodic

orbit to repeat. In this number of synodic periods, in each
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case, a vehicle following the periodic orbit will make two
round trips to Mars and back to Earth. The remaining number
after the hyphen is essentially arbitrary and simply numbers
the periodic orbits within the given group.

An explanation is necessary for the meaning of the
numbers and symbols listed for each periodic orbit. The
first column indicates the planet encountered."E" stands for
Earth and "M" stands for Mars. In each case, only a simple
flyby of Mars occurs; but usually several direct return
trajectories occur at Earth. In order to keep the list
fairly short, only the encounters at Earth are indicated
which occur immediately after and immediately before the
encounter with Mars. The second column gives the dates of
encounter rounded to the nearest day corresponding to those
which would occur if the solar system did correspond to the
circular coplanar Model I.B.; the dates are listed as Julian
Date minus 2440000. The dates listed are close to those
listed as the "a" version (M4-la, M5-la, M5-2a, etc.) of the
periodic orbits listed in Appendix F. These dates, or these
dates plus an integer number of synodic periods, are the
basic starting points in the search for eccentric inclined
periodic orbits (solar system Model III.). The third column
in each case gives two types of information. It gives the
scheme of direct return orbits for each series of direct
returns at Earth, using the symbols of Appendix D. It also

gives the dates (rounded to the nearest day) of the first
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Earth-Mars-FEarth round trip relative to the date of opposi-
tion. For the second Earth-Mars-farth round trip contained
in each periodic orbit, the dates relative to that opposi-
tion date will be the negatives of the dates given for the
first round trip segment in each case. The fourth column
gives the hyperbolic excess speed at each encounter in EMOS.
Only three speeds need to be listed, because the specds at
both Mars encounters are the same by symmetry and because a
series of direct return trajectories at a planet in a cir-
cular orbit will result in the same hyperbolic excess speed
at each encounter at that planet. The fourth column gives
the planetary passing distances in units of the radius of
the planet encountered. In each case, all of the different
planetary passing distances are listed.

The comments associated with each periodic orbit listing
indicate the possibilities of the existence of an indefinitely

long series of flybys according to the given scheme-.
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planet date direct speed passing
returns & distance
date ‘

(1) (2) [&)) (4) (5)

Mi-1

E 546 (S1SR)

E 1030 ~148 0.257 1.54

M 1194 +16 0.314 3,77

E 1800 +622 0.181 1.30

B 2531 (3FR)

M 3502

B 3666 The "a" version exists for the best

approximations used.

M5-1

E 448 (4FR)

E 1901 -48 0.249 . 1.78

M 2008 +49 0.316 7.3

B 2580 +622 0.211 1.55

B 3676 (3FR)

M 4249

E 4348 All versions exist for the best approxi-

mations used.



i

H 2 =2EE

539
1818
1978
2580
2676
4278
4439

574
1783
1958
2580
3676
4298
4473

566
1791
1963
2580
3676
4293
4466
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(FR)(HR)(2FR) l.42
=141 0.245 2.06
+20 0.314 4.79
+622 0.183% 1.37
(3FR)

All versions exist for the best approxi-
mations used.

(2FR) (S18R) 2.21, oo, 8.95
-175 0.302 1.54
-0 0.316 2.00
+622 0.175 0.94
(3FR)

The "a" version does not exist, at least
in the region of the circular coplanar
solution. Discussed in Chapter 2.

(FR) (S28R) 2.19, 18.0
-168 0.289 1.79
+5 0.316 2.33
+622 0.176 1.06
(3FR)

Existence can neither be confirmed nor
denied because of the lack of conver-
gence near 1807 .
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M>-2

E 563 (S338R)

B 1794 -le4 0.284 1.89

M 1965 +7 0.315 2.49

E 2580 +622 0.177 1.10

B 3676 (3FR)

M 4292

E 4462 The "a" version, at least, does not exist,
because it intersects Mars twice in 32
years.

M5-6

E 451 (FR)(HR)(FR)(S1SR) 1l.46, 2.03

E 1906 -52 0.237 2.70

M 2007 +49 0.316 11.0

E 2580 +622 0.210 1.55

E 3676 (3FR)

M 4250

B 4350 The "a" version does not exist, because
it intersects Earth.

Mo~1

B 473 (6FR) 1.27, 4.90

E 2664 =74 0.180 l1.27

M 2782 +43 0.3%15 14,

E 3360 +622 0.204 1.56

B 4456 (3FR)

M 5034

B 5152 All versions exist for the best approxi-

mations used.
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534
2603
2760
3360
4456
5056
5214

4979
2657
2780
3360
4456
5036
5158

500
2636
2774
3360
4456
5042
5180

185

(S1SR) (3FR)(S1SR) 1.52, 2.05

-136 0.237 1.52

+22 0.314 5.84
+622 0.185 1.41
(3FR)

The "a" version exists for the best
approximations used.

(2FR) (HR) (2FR) (L1SR) .998, 3.74, 6.55

~-81 0.175 1.22
+41 0.315 12.5
+622 0.202 1.56

(3FR)

The "a" version exists for the best
approximations used, although rearrange-
ment of the direct returns next to the
short transfer to Mars is occasionally
necessary.

(FR)(HR)(FR)(S1SR)(2FR) l.42, 3.%2.

-102 0.186 24., 00, 1.47
+36 0.315 35,

+622 0.196 1.54

(3FR)

The "a" version exists for solar system
Model II.




500
2636
2774
33260
4456
5042
5180

499
2637
2774
3360
4456
5042
5179

499
2637
2774
3360.
4456,
5042
5179

186

(2FR) (HR)(2FR) (S1SR) 1.47, 3.33, 5.83

-102 0.186 1.13
+36 0.315  33.
+622 0.196 1.54

(3FR)

The "a" version exists for solar system
Model I1I.

(S2SR) (L1SR)(2FR) 1.24, 15.7

~101 0.185 1.32
+36 0.314 30,
+622 0.196 1.54

(3FR)

The "a" version exists for solar system
Model II.

(S1SR) (L2SR) (2FR) 1.11, 15.2

-101 0.185 1.%32
+36 0.314 30.
+622 0.196 1.54

(3FR)

The "a" version exists for solar system
Model II. Convergence was obtained only
by using most of the encounter dates
from M6-6 above.
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H 2 HEH =2 B

Me-9

H 2 HEH R HE

M6-10

= =

H 2 EH 8 X

506
2630
2772
3360
4456
5045
5186

506
2630
2772
3360
4456
5045
5186

486
2651
2778
3360
4456
5038
5165

187

(FR)(S1SR)(L1SR)(2FR) 1.63, 22., 10.8

-108 0.193 1.35
+ 3L 0.314 w0
+622 0.194 1.53
(3FR)

The "a" version apparently does not exist
for solar system Model II; behavior was
exhibited similar to that of periodic
orbit M5-3%.

(S18R)(L1SR)(3FR) 1.25, 10.8

-108 0.193 1.89, 1.89, 1.62
+34 0.314 00

+622 0.194 1.53

(3FR)

The "a" version apparently does not exist,
because of the similarity to M6-8 above.

(L1SR)(3FR)(L1SR) 0.92, 3.71

-87 0.175 0.92
+40 0.315  13.5
+622 0.201 1.55

(3FR)

The "a" version does not exist, because
it intersects Earth twice in 64 years.
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564
2573
2744
3360
4456
5072
5243

188

(3FR) (HR)(2FR)
~166 0.286

+6 0.315
+622 0.176
(3FR)

2.18, 2.52
1.90
2.42
1.09
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APPENDIX F

ECCENTRIC INCLINED EARTH-MARS PERIODIC ORBITS

This appendix contains lists of encounter dates, hyper-
bolic excess speeds, and passing distances for eleven differ-
ent periodic orbits. These periodic orbits are the ones
known as M4-la, all five versions of M5-1, and all five ver-
sions of M5-2. LKach of these periodic orbits is listed for
the length of time required for it to approximately fepeat
in the eccentric inclined case. The solar system model used
for the creation of these lists is solar system Model III.B.

An explanation of the different columns of information
is helpful. The first column lists the planet encountered
at each encounter; all of the planetary encounters are
listed. "E" stands for marth and "M" stands for Mars. The
second column in each list gives the Julian Date of each
encounter rounded to the nearest day. Only the last five
digits of the Julian Date are listed, and the first digit
listed is separated from the other four by a hyphen. The
third column gives the hyperbolic excess speed in EMOS at
each planetary encounter. Columns four and five give respec-
tively the turn angle in degrees and the planetocentric

passing distance in units of the local planetary radii for
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each planetary encounter. Column six gives the type of
trajectory which is to follow each encounter. The symbols
are the same as those used earlier with the addition of
"IP" to stand for an interplanetary trajectory.

The series of full revolution returns in each case
is optimal in that the minimum passing distance for the
series is maximized. However, the combinations of full
revolution returns with a half revolution return in all
of the versions of periodic orbit M5-2 are not optimally
arranged. The minimum passing distance could be increased
in several instances by reordering the FR and HR and/or
by changing the side of the ecliptic plane on which the HR
is chosen.

The lists of trajectories follow.
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Periodic Orbit Mi-la

planet date speed turn passing  trajectory
angle distance type

(1) 2) (3) @ %) &

E 4-0538 0.249 48.8 1.63 S1SR

E 4-1023 0.249 49.1 1.60 IP

M 4-1164 0.349 7.5 1.71 1P

E 4-1806 0.178 85.0 1.14 FR

E 4-2172 0.178 10.9 21.3 FR

E 4-2537 0.178 10.9 2l.3 FR

E 4-2902 0.178 82.5 1.16 IP

M 42495 0.353 6.1 2.10 IP

E 4-3672 0.254 55.1 1.28 S1SR

) 4-4156 0.253 56.2 l1.24 IP

M 4-4340 0.321 6.1 2.51 IP

E 4-491°2 0.189 67.6 1.57 FR

B 4-5277 0.189 62.8 1.81 FR

E 4-5643 0.189 62.8 1.81 FR

B 4-6008 = 0.189 68.5 1.54 IP

M 4-6635 0.282 10.6 1.80 1P

B 4-67784 0.270 45.2 1.55 S1SR

E 47266 0.271 44,7 1.58 IP

M 4-7414 0.295 9.8 1.81 IP

E 4-8046 0.188 72.2 1.39 FR

E 4-8411 0.188 58.8 2.07 FR

E 4-8776 0.188 58.8 2.07 FR

E 4-9142 0.188 71.2 1.43 Ip

M 4-9718 0.326 5.9 2.55 IP

E 4-9900 0.251 57 .4 1.22 S15R

E 5-0585 0.250 53.5 1.38 IP

M 5-0563 0.348 5.0 2.66 1P

E 5-1149 0.178 773 1.35 FR

E 5-1514 0.178 6.3 38.7 FR

E 5-1879 0.178 6.5 38.7 FR

B 5-2244 0.178 78 .4 1.30 IP

M 5-2896 0.347 11.2 1.12 Ip

E 5-3044 0.269 44 .8 1.59 S1SR

B 5-3527 0.270 46.8 1.48 IP

M 5-2683 0.252 5.3 4.7% IP

E 5-4287 0.211 60.3 1.58 FR

B 5-4652 0.211 60.3 1.58 FR

E 5-5017 0.211 60.3 1.58 FR

B 5-5382 0.211 0.5 1.58 IP

M 5-5945 0.301 4.6 5.82 Ip
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252 57.8 1.19
.252 50.8 1.48
. 376 5.6 3,17
179 - 76.1 1.37
179 75.1 1.41
179 75.1 1.41
.179 6.7 1.35
. 302 6.2 1.66
. 266 45.3% 1.60
. 265 51.1 1.32
. 247 5.0 5.29
. 226 58.2 1.47
. 226 58.2 1.47
. 226 58.2 1.47
. 226 58.2 1.47
. 278 3.7 5.64
. 257 56.0 1.21
. 256 48.8 1.54
- 398 2.9 3.53
.189 69.9 1.47
.189 69.9 1.47
.189 69.9 1.47
.189 69.9 1.47
<405 3.5 2.82
. 265 47.3 1.50
. 266 55.5 1.15
. 261 5.8 4.01
. 229 57.2 1.47
. 229 57.2 1.47
. 229 57.2 1.47
. 229 57 .2 1.47
. 256 3.4 736
. 261 52.4 1.%2
. 260 47.3% 1.57
404 4.8 2.07
.188 70.1 1.48
.188 70.1 1.48
.188 70.1 1.48
.188 70.1 1.48
. 393 4.4 2.35
. 262 50.2 1.40
. 262 57.6 1.11
. 283 5.9 %.38
. 222 56.6 1.60
. 222 56.6 1.60
.222 56.6 1.60
. 222 56.6 "1.60
. 245 3.6 7.63
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. 265
. 265
. 582
.180
.180
.180
.180
. 369

. 257
. 256
° 308
.203
. 203
.203%
. 203
.258

.270
.270
« 330
.180
.180
.180
L] 180
. 341

. 252
.251
° 533
.183
0185
0185
0185
. 501

. 249
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Periodic Orbit M5-=la

planet date

(1) (2)

40447
4-0813
4-1178
4-1543
4-1908
4-2018
4-2592
4-2957
4-3322
4-3688
44227

4-4339
44904
4-5069
4-5435
4-5800
4-5881
4-6480
47245
4-7610
4-7975
4-8176

4-8256
4-8621
4-8986
4-9351
4-9717
4-9830
5-0368
5-0734
5-1099
5-1464
5-20%5

5-2147

H TorEERHEEEE EEEEEEEEHEEE EHEHEHERHEBEE

speed
(3)

0.188
0.188
0.188
0.188
0.188
0.252
0.239
0.239
0.239

0.239
0.3%28

0.333
0.333
0.33%
0.333
0.533
0.390
0.171
0.171
0.171
0.171
0.389

0.3206
0.3%26
0.3%26
0. 326
0.3%26
0. %22
0.240
0.240
0.240
0.240
0.249

0.188
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passing trajectory
distance type
(5) (6)
1.14 FR
2.26 FR
2.26 FR
2.26 FR
1.09 IP
6.57 IP
1.53 FR
1.53% FR
1.53 FR
1.5% IP
1.53 IP
1.3%4 FR
1.34 FR
1.34 FR
1.34 FR
1.34 IP
1.06 IP
1.3 FR
1.31 FR
1.3%1 FR
1.51 IP
1.13 IP
1.37 FR
1.3%7 FR
1.57 FR
1.37 FR
1.37 IP
1.6% iP
1.59 FR
1.59 FR
1.59 FR
1.59 IP
6.41 IP
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Periodic Orbit M5-1b

planet date speed turn passing trajectory
%&%lg distance type

(1) (2) (3) (%) (e)
E 4-123%3 0.208 55.2 1.90 FR
E 4-1598 0.208 48,2 2.57 FR
B 4-1963% 0.208 48.2 2.37 FR
E 4-23%329 0.208 48.2 2.37 FR
E 4-2694 0.208 62.6 1.52 IP
M 4-2821 0.261 9.8 2.32 IP
E 4-3364 0.260 54,0 1.26 FR
B 4-373%0 0.260 54.0 1.26 FR
E 4-40465 0.260 54,0 1.26 FR
E 4-4460 0.260 54.0 1.26 Ip
M 4-4995 0.286 9.2 2.04 IP
E 4-5120 0.248 46,1 1.78 FR
B 4-5485 0.248 44,7 1.87 FR
E 4-5850 0.248 44,7 1.87 FR
B 4-6215 0.248 44 .7 1.87 FR
E 4-6581 0.248 44,7 1.87 IP
M 4-6656 0.350 5.7 2.27 IP
E 4-7267 0.185 69.5 1.56 FR
E 4-7632 0.185 67.5 1.66 FR
E 4-7998 0.185 67.5 1.66 FR
E 4-8363% 0.185 69.0 1.58 1P
M 4-893%7 0.377 10.% 1.04 IP
E 4-9029 0.370 37.9 1.07 FR
E 4-9304 0.3%70 37.9 1.07 FR
E 4.-9759 0.370 37.9 1.07 FR
E 5-0125 0.370 37.9 1.07 FR
E 5-0490 0.3%70 37.9 1.07 IP
M 5-0589 0.362 9.7 1.22 IP
E 5-1148 0.198 60.7 1.76 FR
E 5-1513 0.198 60.7 1.76 FR
E 5-1879 0.198 60.7 1.76 FR
E 5- 2244 0.198 60.7 1.76 IP
M 5-2851 0.308 4,0 4.32 IP
E 5-2932 0.208
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Periodic Orbit M5-lc

planet date speed turn passing trajectory
%gg;g distance type

(1) (2) (3) 4) (5) (6)
E 4-0235 0.174 75.8 1.46 FR
B 4-0600 0.174 75.4 1.48 FR
B 4-0966 0.174 75 .4 1.48 FR
B 41331 0.174 75. 4 1.48 IP
M 43942 0.3%70 6.8 1.69 ip
E 42016 0.274 40.6 1.77 FR
E 4-2382 0.274 40.6 1.77 FR
E 427457 O.274 40.6 1.77 FR
E 4.-3112 0.274 40.6 1.77 FR
E 43477 0.274 40.6 1.77 Ip
M 43590 0.296 10.5 1.65 IP
E 44135 0.255 51.2 1.43 FR
E 4-4500 0.255 51.2 1.43 FR
E 4-4865 0.255 51.2 1.43 FR
E 45231 0.255 51.2 1.43 ip
M 44780 0.252 5.4 4.68 IP
E 45907 0.192 75.1 1.22 FR
E 4-6272 0.192 51.1 2.52 FR
B 46637 0.192 51.1 2.52 FR
B 4-7002 0.192 51.1 2.52 FR
E 4-7368 0.192 724 1.33 IP
M 47462 0.268 3.5 6.86 IP
E 4-8052 0.225 54.8 l.64 EFR
E 48418 0.225 54.8 l.64 FR
E 4-878% 0.225 S4.8 1.64 FR
E 49148 0.225 54,8 1.64 IP
M 4-9694 O.343 9.5 1.37 IP
E 4-9801 0.3%55 37.2 1.20 FR
E 5-0166 0.3%55 37.2 1.20 FR
E 5-0531 0. 355 37.2 1.20 FR
E 5-0896 0.3%55 3.2 1.20 FR
B 5-1262 0.3%55 37.2 1.20 IP
M 5-1347 0. 389 10.1 1.00 IP
E 5-19%4 0.174
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Periodic Orbit M5-1ld

planet date speed turn passing trajectory
angle distance type

(L) (2) (3) Uii (>) (6)
E 4-1025 0.176 76.9 1.3%9 FR
E 4-1390 0.176 69.5 1.7% FR
E 4-1756 0.176 69.5 1.73 FR
E 4-2121 0.176 75.5 1.45 IP
M 42710 0.390 9.8 1.03 IP
E 4-2794 0.351 37.9 1.20 FR
E 4-3159 0.351 37.9 1.20 FR
E 4-3525 0.%51 37.9 1.20 FR
E 4-3890 0.351 37.9 1.20 FR
E 4-4255 0.351 37.9 1.20 IP
M 4-4363 0.338 8.8 1.53 IP
E 4-4907 0.226 55.7 1.69 FR
E 45272 0.226 53.7 1.69 FR
E 4-5637 0.226 53.7 1.69 FR
E 4-6003 0.226 53.7 1.69 IP
M 4-6589 0.261 4.2 5.57 IP
E 4-6688 0.190 75.2 1.%2 FR
E 4-7053% 0.190 45.2 3.13% FR
E 4-7418 0.190 45,2 3.13 FR
E 4-7784 0.1S0 45.2 5.1% FR
E 4-8149 0.190 76 .4 1.20 IP
M 4-8274 0.252 7.1 3.50 Ip
E 4-8827 0. 254 53.0 1.%6 FR
E 4-9192 0.254 53.0 1.%6 FR
E 4-9558 0.254 53.0 1.36 FR
E 4-6023% 0.254 53.0 1.36 IP
M 5-0457 0.302 9.4 1.79 IP
E 5-0578 0.284 39.9 1.69 FR
E 5-0943 0.284 39.9 1.69 FR
E 5-13208 0.284 %5.9 1.69 FR
E 5-167% 0.284 39.9 1.69 FR
E 5-203%9 0.284 39.9 1.69 Ip
M 5-2114 0.374 7.6 1.48 IP
E

5=2724 0.176
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Periodic Orbit MS5-1le

planet date 8peed turn passing  trajectory
an§;g distance type

(1) (2) (3) @ (5) (6)
E 3-9662 0.214 59.9 1.55 FR
E 4-0027 0.214 50.7 2.07 FR
E 4-0392 0.214 50.7 2.07 FR
E 4-C757 0.214 50.7 2.07 FR
E 4-1123 0.214 53.4 1.90 IP
M 4-1202 0.318 3.8 4.27 IP
E 4-1810 0.198 62.2 1.69 - FR
E 4-2176 0.198 62.2 1.69 FR
E 4-2541 0.198 62.2 1.69 FR
E 4-2906 0.198 62.2 1.69 1P
M 4-3468 0.365 10.1 1.14 IP
B 4-3566 0.371 37 .4 1.09 FR
E 4-393]1 0.371 37 4 1.09 FR
E 44296 0.371 37.4 1.09 FR
E 44662 0.371 37 .4 1.09 FR
E 4-5027 0.371 37 .4 1.09 1P
M 4-5121 0.3574 10.2 1.07 IP
E 4-5691 0.184 67.9 1.65 FR
E 4-6056 0.184 67.9 1.65 FR
E 46422 0.184 67.9 1.65 FR
B 4-6787 0.184 67.9 1.65 IP
M 4-7399 0.342 5.1 2.67 Ip
E 477474 0.239 45.1 1.99 FR
E 4-7839 0.239 45,1 1.99 FR
E 4-8205 0.239 45.1 1.99 FR
B 4-8570 0.239 45.1 1.99 FR
E 4-8935 0.239 47.6 1.84 IP
M 4-9061 0.281 11.1 1.72 IP
E 4-9598 0.260 52.0 1.34 FR
E 4-9963 0.260 52.0 1.3%4 FR
E 5-0329 0.260 52.0 1.%4 FR
E 5-0694 0.260 52.0 1.%4 IP
M 5-1234 0.264 7.3 3.07 Ip
E 5-1360 0.215



Periodic Orbit M5-2a

planet date
(1) (2)

4-0539
4-0904
4-1083
4-1449
4-1814
4-1968
4-2586
4-2951
4-3316
4-3681
4-4245

4-44.2)
4-4786
4-4969
4-5335
4-5700
4-5853
4-6479
46844
4-7209
4-7575
4-820%

4-8352
4-8717
4-8903
4-9269
4-9634
4-0812
5-0374
5-073%9
5-1104
5-1469
5-2082

5-2238

H RO REHEEEE REEENE e EEEE RS R EEEE

speed
(3)

0.281
0.281
0.280
0.280
0.280
0.266
0.202
0.202
00202
0.202
0.312

0.223
0.223
0.230
0.230
0.230
0.%98
0.179
0.179
0.179
0.179
0.299

0.226
0.226
0.226
0.226
0.226
0.204
0.204
0.204
0.204
0.258

0.281
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passing trajectory
distance type
(5) (6)
1.42 FR
1.42 HR
2.07 FR
2.07 FR
2.07 IP
2.6%7 IP
1.56 FR
1.57 FR
1.57 FR
1.57 IP
9.38 IP
1.16 FR
1.16 HR
2.34 FR
2.34 FR
2.08 IpP
4,3%3% IP
1.%6 FR
1.36 FR
1.36 FR
1.3%6 IP
5.35 Ip
1.50 FR
1.50 HR
1.81 FR
1.81 FR
1.81 IP
8.37 IP
1.67 FR
1.67 FR
1.67 FR
1.67 IP
2.59 IpP
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Periodic Orbit M5-2b

planet date speed turn passing trajectory
angle distance type
(1) (2) (3) <4§ (5) (e)
E 4-1340 0.262 43.8 1.73 FR
E 4-1705 0.262 43.8 1.73 HR
E 4-1889 0.262 q4.% 1.69 FR
B 4-2255 0.262 44,7 1.69 FR
B 4-2620 0.262 44,7 1.69 IP
M 4-2793 0.250 4.2 6.10 IP
E 4-3364 0.230 58.0 1.42 FR
E 4-3729 0.230 58.0 1.42 FR
E 4-4094 0.230 58.0 l.42 FR
B 4-4459 0.230 58.0 1.42 IP
M 4-5017 0.272 1.8 12.6 IP
E 4-5196 0.245 62.9 1.08 FR
B 4-5562 0.245 62.9 1.08 HR
E 4-5742 0.252 37.7 2.34 ¥R
E 4-6107 0.252 37.7 2.34 FR
E 4-6472 0.252 37.7 2. 34 IP
M 4-6618 0.380 6.5 1.67 IP
E 47258 0.176 83.8 1.13 FR
E 4-7623% 0.176 37.8 4.76 FR
E 4-7088 0.176 57.8 4.76 FR
E 4-8353 0.176 81.7 1.21 IP
M 4-8957 0.372 2.4 4,93 IP
E 4-9118 0.213 54.8 1.83 FR
E 4-9483 0.213 52.2 1.99 FR
E 4-9848 0.213 52.2 1.99 HR
B 5-00%4 0.217 63.1 1.37 FR
E 5-0399 0.217 63.1 1.37 IP
M 5-0569 0.350 2.4 5.66 IP
E 5-1154 0.174 80.6 1.27 FR
B 5-1519 0.174 28.3 7.21 FR
E 5-1884 0.174 28.3 7.21 FR
E 5-2249 0.174 83.3 1.18 IP
M 5-2894 0.3%43 10.0 1.31 IP
E 5-303%9 0.262 '



Periodic Orbit M5-2¢

planet date

(1) (2)

4-0240
4-0605
4-0970
4-1336
4-1974
4-2119
42484
4-2671
4-303%6
4-3401
4-3580

4-4] 37
4-4503
4-4868
4-5233
4-5818
4-5988
4-63%53
4-6532
4-6897
4-7263%
4-411

4-8044
4-8409
4-8775
4-9140
4-9712
4-9885
5-0250
5-04 34
5-0799
5-1164
51322

5-1939

H RHEHEHEEEHEEE EREOEHETREEEE EEEEEEEHEEE

speed

(3)

0.176
0.176
0.176
0.176
0.392
0.240
0.240
0.237
0.237
0.237
0.282

0.222
0.222
0.222
0.222
0.246
0.277
0.277
0.276
0.276
0.276
0.297

0.189
0.189
0.189
0.189
0.3%28
0.217
0.217
0.224
0.224
0.224
0.389

0.176
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passing trajectory
distance type
(5) (e)
1.31 FR
1.31 FR
1.31 FR
1.25 IP
2.71 IP
1.61 FR
l1.61 HR
1.72 FR
1.72 FR
1.72 IP
11.1 IP
1.60 FR
1.60 FR
1.60 FR
1.60 IP
5.83 Ip
1.16 FR
1.16 HR
2.3 FR
2.31 FR
2.31 IP
1.63 Ip
1.40 FR
1.99 FR
1.99 FR
1.48 Ip
6.91 IP
1.21 FR
1.21 HR
2.28 FR
2.28 FR
2.03 IP
5.89 IP
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Periodic Orbit M5-24

planet date speed turn passing trajectory
angle distance type
(1) (2) (3) Z4§ (5) (6)
E 4-1019 0.179 78.1 1.29 FR
E: 4-1385 0.179 69.9 1.65 FR
E 4-1750 0.179 69.9 1.65 FR
E 4-2115 0.179 77.8 1.31 IP
M 4-2734 0.392 1.9 5.58 IP
E 4-2887 0.219 60.8 1.44 FR
E 4-3252 0.219 60.8 1.44 HR
E 4-3438 0.221 51.7 1.88 FR
E 4-3804 0.221 51.7 1.88 FR
E 4-4169 0.221 51.7 1.88 IP
M 44345 0.3253 2.5 6.51 IP
B 4-4914 0.189 67.5 1.59 FR
E 4-5280 0.189 62.5 1.84 FR
B 4-5645 0.189 62.5 1.84 FR
E 4-6010 0.189 69.1 1.52 IP
M 4-6641 0.287 15.6 1.%2 1P
E 4-6793 0.283% 41 .4 l.61 FR
E 4-77158 0.283 41.4 1.61 HR
E 4-7340 0.274 40.9 1.76 FR
E 4-7705 0. 274 40.9 1.76 FR
E 4-8070 0.274 40.9 1.76 IP
M 4-823%7 0.246 5.3 L.9%% IP
B 4-8825 0.222 58.1 1.52 FR
E 4-9190 0.222 58.1 1.52 FR
B 4-9555 0.222 58.1 1.52 FR
E 4-9921 0.222 58.1 1.52 IP
M 5-0477 0.287 1.4 14.2 IP
E 5-0657 0.235 65.1 1.10 FR
E 5-1022 0.235 65.1 1.10 HR
E 5-1203 0.243 39 .4 2.36 FR
E 5-1568 0.243% 39.4 2.36 FR
E 5-1933 0.243 41.1 2.22 IP
M 5-2081 0.356 4.5 2.27 IpP

=

5-2718 0.179
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Periodic Orbit M5-2e

planet date speed turn passing  trajectory
angle distance type

(1) (2) (3) (E§ ) (6)
E 3-9740 0.261 57.8 l.11 FR
E 4-0105 0.261 57.8 1.11 HR
B 4-0284 0.261 35.1 2.42 FR
E 4-0649 0.261 35.1 2.42 FR
E 4-1015 0.261 35.1 2.41 IP
M 4-1160 0.354 9.0 1.39 IP
E 4-1806 0.179 81.9 1.16 FR
E 4-2172 0.179 9.9 23.5 FR
E 4-2537 0.179 9.9 23.5 FR
E 4-2902 0.179 79.0 1.27 IP
M 4-3487 0.355 2.2 5.92 Ip
E 4-3653 0.212 66.5 1.29 FR
E 4-4018 0.212 66.5 1.29 HR
E 4-4203 0.218 49.1 2.10 FR
E 4-4569 0.218 49.1 2.10 FR
E 4-4G34 0.218 51.1 1.97 IP
M 4-5099 0.367 2.2 5.62 IP
B 4-5701 0.172 84.2 1.17 FR
E 4-6066 0.172 35.6 5.41 FR
E 4-643%2 0.172 35.6 5.41 FR
E 4-6797 0.172 86.2 1.11 IP
M 47436 0.374 6.5 1.76 IP
E 4-7581 0.251 37.7 2.36 FR
E 4-7946 0.251 37.7 2.36 FR
E 4-8312 0.251 37.7 2.36 HR
E 4-8497 0.246 64.8 1.02 FR
B 4-8863 0.246 64.8 1.02 IP
M 4-9041 0.268 2.2 10.4 IP
E 4-9599 0.230 56.3 1.50 FR
E 4-9964 0.250 56.3 1.50 FR
E 5-03%3%0 0.230 56.3% 1.50 FR
B 5-0695 0.230 56.3 1.50 IP
M 5-1264 0.252 3.0 8.42 IP
E 5-1439 0.261
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New Technology Appendix

After a diligent review of the work performed under this
contract, no new innovation, discovery, improvement or

invention was made. -






